相关习题
 0  350973  350981  350987  350991  350997  350999  351003  351009  351011  351017  351023  351027  351029  351033  351039  351041  351047  351051  351053  351057  351059  351063  351065  351067  351068  351069  351071  351072  351073  351075  351077  351081  351083  351087  351089  351093  351099  351101  351107  351111  351113  351117  351123  351129  351131  351137  351141  351143  351149  351153  351159  351167  366461 

科目: 来源: 题型:

【题目】如图,已知点O为Rt△ABC斜边AC上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点E,与AC相交于点D,连接AE.
(1)求证:AE平分∠CAB;
(2)探求图中∠1与∠C的数量关系,并求当AE=EC时tanC的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】(c2012防城港)某奶品生产企业,2010年对铁锌牛奶、酸牛奶、纯牛奶三个品种的生产情况进行了统计,绘制了图1、2的统计图,请根据图中信息解答下列问题:
(1)酸牛奶生产了多少万吨?把图1补充完整;酸牛奶在图2所对应的圆心角是多少度?
(2)由于市场不断需求,据统计,2011年的生产量比2010年增长20%,按照这样的增长速度,请你估算2012年酸牛奶的生产量是多少万吨?

查看答案和解析>>

科目: 来源: 题型:

【题目】(1)如图示,AB∥CD,且点E在射线ABCD之间,请说明∠AEC=∠A+∠C的理由.

(2)现在如图b示,仍有AB∥CD,但点EABCD的上方,请尝试探索∠1,∠2,∠E三者的数量关系. ②请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知等腰△ABC的顶角∠A=36°(如图).
(1)作底角∠ABC的平分线BD,交AC于点D(用尺规作图,不写作法,但保留作图痕迹,然后用墨水笔加墨);
(2)通过计算说明△ABD和△BDC都是等腰三角形.

查看答案和解析>>

科目: 来源: 题型:

【题目】二次函数y=﹣(x﹣2)2+ 的图象与x轴围成的封闭区域内(包括边界),横、纵坐标都是整数的点有个(提示:必要时可利用下面的备用图画出图象来分析).

查看答案和解析>>

科目: 来源: 题型:

【题目】(1)在等边三角形ABC中,

如图①,D,E分别是边AC,AB上的点且AE=CD,BDEC交于点F,则∠BFE的度数是   度;

如图②,D,E分别是边AC,BA延长线上的点且AE=CD,BDEC的延长线交于点F,此时∠BFE的度数是   度;

(2)如图,在△ABC中,AC=BC,∠ACB是锐角,点OAC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BDEC的延长线交于点F,若∠ACB=α,求∠BFE的大小.(用含α的代数式表示).

查看答案和解析>>

科目: 来源: 题型:

【题目】一个盒子里有完全相同的三个小球,球上分别标上数字﹣1、1、2.随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程x2+px+q=0有实数根的概率是(  )
A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】(1)机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?

(2)某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:

方案一:将蔬菜全部进行粗加工.

方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接销售.

方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.

你认为哪种方案获利最多?为什么?

查看答案和解析>>

科目: 来源: 题型:

【题目】(1)如图CD在线段ABD是线段AB的中点AC=AD CD=4 ,求线段AB的长

(2)如图,点O是直线AB上的一点,OD是∠AOC的平分线,OE是∠COB的平分线,若∠AOD=14°,求∠DOE、∠BOE的度数.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图,在△ABC中,DBA延长线上一点,AE∠DAC的平分线,PAE上的一点(点P不与点A重合),连接PB,PC.通过观察,测量,猜想PB+PCAB+AC之间的大小关系,并加以证明.

查看答案和解析>>

同步练习册答案