科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,函数y=
(x>0,k是常数)的图象经过A(2,6),B(m,n),其中m>2.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,AC与BD交于点E,连结AD,DC,CB.![]()
(1)若△ABD的面积为3,求k的值和直线AB的解析式;
(2)求证:
=
;
(3)若AD∥BC,求点B的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:四边形ABCD中,AD∥BC,AD=AB=CD,∠BAD=120°,点E是射线CD上的一个动点(与C、D不重合),将△ADE绕点A顺时针旋转120°后,得到△ABE',连接EE'.
(1)如图1,∠AEE'= °;
![]()
(2)如图2,如果将直线AE绕点A顺时针旋转30°后交直线BC于点F,过点E作EM∥AD交直线AF于点M,写出线段DE、BF、ME之间的数量关系;
![]()
(3)如图3,在(2)的条件下,如果CE=2,AE=
,求ME的长.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中.AB=AC.∠BAC=90
.E是AC边上的一点,延长BA至D,使AD=AE,连接DE,CD.
(l)图中是否存在两个三角形全等?如果存在请写出哪两个三角形全等,并且证明;如果不存在,请说明理由;
(2)若∠CBE=30
,求∠ADC的度数.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,AB=c,AC=b.AD是△ABC的角平分线,DE⊥AB于E,DF⊥AC于F,EF与AD相交于O,已知△ADC的面积为1.
(1)证明:DE=DF;
(2)试探究线段EF和AD是否垂直?并说明理由;
(3)若△BDE的面积是△CDF的面积2倍.试求四边形AEDF的面积.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,ME和NF分别垂直平分AB和AC.
(1)若BC =10cm,试求△AMN的周长.
(2)在△ABC中,AB = AC,∠BAC = 100°,求∠MAN的度数.
(3) 在 (2) 中,若无AB = AC的条件,你还能求出∠MAN的度数吗?若能,请求出;若不能,请说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC中,∠A=100°,BI、CI分别平分∠ABC,∠ACB,则∠BIC=________,若BM、CM分别平分∠ABC,∠ACB的外角平分线,则∠M=__________.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点A、O、B在一条直线上,将射线OC绕O点顺时针方向旋转90°后,得到射线OD,在旋转过程中,射线OC始终在直线AB上方,且OE平分∠AOD.约定,无论∠AOD大小如何,OE都看作是由OA、OD两边形成的最小角的平分线.
(1)如图,当∠AOC=30°时,∠BOD=_________°;
(2)若射线OF平分∠BOC,求∠EOF的度数.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知Rt△ABD中,∠A=90°,将斜边BD绕点B顺时针方向旋转至BC,使BC∥AD,过点C作CE⊥BD于点E. ![]()
(1)求证:△ABD≌△ECB;
(2)若∠ABD=30°,BE=3,求弧CD的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】九年级(1)班和(2)班分别有一男一女共4名学生报名参加学校文艺汇演主持人的选拔.
(1)若从报名的4名学生中随机选1名,则所选的这名学生是女生的概率是 .
(2)若从报名的4名学生中随机选2名,用树状图或表格列出所有可能的情况,并求出这2名学生来自同一个班级的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC的面积为8cm2 , AP垂直∠B的平分线BP于P,则△PBC的面积为( )
![]()
A. 2cm2 B. 3cm2 C. 4cm2 D. 5cm2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com