科目: 来源: 题型:
【题目】如图,已知抛物线y=﹣x2+2x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接BC.![]()
(1)求A、B、C三点的坐标及抛物线的对称轴;
(2)若已知x轴上一点N(
,0),则在抛物线的对称轴上是否存在一点Q,使得△CNQ是直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】下表是橘子的销售额随橘子卖出质量的变化表:
质量/千克 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | … |
销售额/元 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | … |
(1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)当橘子卖出5千克时,销售额是_______元.
(3)如果用
表示橘子卖出的质量,
表示销售额,按表中给出的关系,
与
之间的关系式为______.
(4)当橘子的销售额是100元时,共卖出多少千克橘子?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图 ,已知直线l1,l2,点P在直线l3上且不与点A、B重合.记∠AEP=∠1,∠BFP=∠2,∠EPF=∠3.
(1) 如图 ,若直线l1//l2,点P在线段AB(A、B两点除外)上运动时,写出∠1、∠2、∠3之间的关系,并说明理由.
(2)如图 ,若(1)中∠1、∠2、∠3之间的关系成立,你能不能反向推出直线l1//l2?若成立请说明理由.
(3)如图 ,若直线l1//l2,若点P在A、B两点外侧运动时(不包括线段AB),请直接写出∠1、∠2、∠3之间的关系.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,设坐标轴的单位长度为1cm,整数点P从原点O出发,速度为1cm/s,且点P只能向上或向右运动,请回答下列问题:
![]()
(1)填表:
![]()
(2)当P点从点O出发10秒,可得到的整数点的个数是 个.
(3)当P点从点O出发 秒时,可得到整数点(10 ,5).
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,矩形ABCD中,AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,第n次平移将矩形An﹣1Bn﹣1Cn﹣1Dn﹣1沿An﹣1Bn﹣1的方向平移5个单位,得到矩形AnBnCnDn(n>2).
![]()
(1)求AB1和AB2的长.
(2)若ABn的长为56,求n.
查看答案和解析>>
科目: 来源: 题型:
【题目】在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”,根据图形,回答下列问题.
(1)图中格点三角形A′B′C′是由格点三角形ABC通过怎样的变换得到的?
(2)如果以直线a,b为坐标轴建立平面直角坐标系后,点A的坐标为(-3,4),请求出三角形DEF的面积S.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,线段AB=6cm,动点P以2cm/s的速度从A﹣B﹣A在线段AB上运动,到达点A后,停止运动;动点Q以1cm/s的速度从B﹣A在线段AB上运动,到达点A后,停止运动.若动点P,Q同时出发,设点Q的运动时间是t(单位:s)时,两个动点之间的距离为S(单位:cm),则能表示S与t的函数关系的是( )
![]()
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是
![]()
A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,正方形
的边
,
在坐标轴上,点
的坐标为
.点
从点
出发,以每秒1个单位长度的速度沿
轴向点
运动;点
从点
同时出发,以相同的速度沿
轴的正方向运动,规定点
到达点
时,点
也停止运动,连接
,过
点作
的垂线,与过点
平行于
轴的直线
相交于点
,
与
轴交于点
,连接
,设点
运动的时间为
秒.
(1)线段
(用含
的式子表示),点
的坐标为 (用含
的式子表示),
的度数为 .
(2)经探究
周长是一个定值,不会随时间
的变化而变化,请猜测周长的值并证明.
(3)①当
为何值时,有
.
②
的面积能否等于
周长的一半,若能求出此时
的长度;若不能,请说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图①,在
中,
cm ,
cm,过点
作射线
.点
从点
出发,以3 cm/s的速度沿
匀速移动;点
从点
出发,以
cm/s的速度沿
匀速移动.点
、
同时出发,当点
到达点
时,点
、
同时停止移动.连接
、
,设移动时间为
(s).
(1)点
、
从移动开始到停止,所用时间为 s;
(2)当
与
全等时,
①若点
、
的移动速度相同,求
的值;
②若点
、
的移动速度不同,求
的值;
(3)如图②,当点
、
开始移动时,点
同时从点
出发,以2 cm/s的速度沿
向点
匀速移动,到达点
后立刻以原速度沿
返回.当点
到达点
时,点
、
、
同时停止移动.在移动的过程中,是否存在
与
全等的情形?若存在,求出
的值;若不存在,说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com