科目: 来源: 题型:
【题目】已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,
(1)求证:DF与⊙O的位置关系并证明;
(2)求FG的长.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,正方形 ABEF 的面积为 4,△BCE 是等边三角形,点 C 在正方形ABEF 外,在对角线 BF 上有一点 P,使 PC+PE 最小,则这个最小值的平方为( )
![]()
A.
B.
C.12D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且|2a﹣b+8|+(a+b﹣2)2=0.
![]()
(1)求a、b的值;
(2)如图1,点G在y轴上,三角形COG的面积是三角形ABC的面积的
,求出点G的坐标;
(3)如图2,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上的一个动点,连接OP、AC、DB,OE平分∠AOP,OF⊥CE,若∠OPD+k∠DOF=k(∠FOP+∠AOE),现将四边形ABDC向下平移
k个单位得到四边形A1B1D1C1,已知AM+BN =
k,求图中阴影部分的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,一次函数
的图象与反比例函数
的图象交于
,
两点,与
轴交于点
,与
轴交于点
,已知点
坐标为
,点
的坐标为
.
(1)求反比例函数的解析式和一次函数的解析式;
(2)连结
,求
的面积;
(3)观察图象直接写出
时
的取值范围是 ;
(4)直接写出:
为
轴上一动点,当三角形
为等腰三角形时点
的坐标 .
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高3米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有27米的距离(B,F,C在一条直线上).
![]()
(1)求办公楼AB的高度;
(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.
(参考数据:sin22°≈
,cos22°≈
,tan22°≈
)
查看答案和解析>>
科目: 来源: 题型:
【题目】参照学习函数的过程与方法,探究函数
的图象与性质.
因为
,即
,所以我们对比函数
来探究.
列表:
| … |
|
|
|
|
|
| 1 | 2 | 3 | 4 | … |
| … |
|
| 1 | 2 | 4 |
|
| 1 |
|
| … |
| … |
|
| 2 | 3 | 5 |
|
| 0 |
|
| … |
描点:在平面直角坐标系中,以自变量
的取值为横坐标,以
相应的函数值为纵坐标,描出了相应的点(如图所示).
(2)观察图象并分析表格,回答下列问题:
①当
时,
随
的增大而 ;(填“增大”或“减小”)
②
的图象是由
的图象向 平移 个单位而得到;
③
图象关于点 成中心对称.(填点的坐标)
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某校九年级组织有奖知识竞赛,派小明去购买A、B两种品牌的钢笔作为奖品.已知一支A品牌钢笔的价格比一支B品牌钢笔的价格多5元,且买100元A品牌钢笔与买50元B品牌钢笔数目相同.
(1)求A、B两种品牌钢笔的单价分别为多少元?
(2)根据活动的设奖情况,决定购买A、B两种品牌的钢笔共100支,如果设购买A品牌钢笔的数量为n支,购买这两种品牌的钢笔共花费y元.
①直接写出y(元)关于n(支)的函数关系式;
②如果所购买A品牌钢笔的数量不少于B品牌钢笔数量的
,请你帮助小明计算如何购买,才能使所花费的钱最少?此时花费是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】操作发现:
(1)如图,在平面直角坐标系中有一点
,将点
先向右平移3个单位长度,再向下平移3个单位长度得到点
,则点
的坐标为 ;并在图中画出直线
的函数图象;
(2)直接写出直线
的解析式 ;
(3)若直线
上有一动点
,设点
的横坐标为
.
①直接写出点
的坐标 ;
②若点
位于第四象限,直接写出三角形
的面积 .(用含
的式子表示)
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某学校有1500名学生参加首届“我爱我们的课堂”为主题的图片制作比赛,赛后随机抽取部分参赛学生的成绩进行整理并制作成图表如下:
频率分布统计表 | 频率分布直方图 | ||
分数段 | 频数 | 频率 |
|
60≤x<70 | 40 | 0.40 | |
70≤x<80 | 35 | b | |
80≤x<90 | a | 0.15 | |
90≤x<100 | 10 | 0.10 | |
请根据上述信息,解答下列问题:
(1)表中:a= ,b= ;
(2)请补全频数分布直方图;
(3)如果将比赛成绩80分以上(含80分)定为优秀,那么优秀率是多少?并且估算该校参赛学生获得优秀的人数。
查看答案和解析>>
科目: 来源: 题型:
【题目】已知AB∥CD,点M、N分别是AB、CD上两点,点G在AB、CD之间,连接MG、NG.
![]()
(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;
(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG=30°,求∠MGN+∠MPN的度数;
(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=105°,求∠AME的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com