科目: 来源: 题型:
【题目】如图所示,在直角坐标系中,已知
、
、
三点,其中
、
、
满足关系式
,
≤
.
(1)
=_______;
=________;
=_______.
(2)如果点
是第二象限内的一个动点,坐标为
.将四边形
的面积用
表示,请你写出
关于
的函数表达式,并写出自变量的取值范围.
(3)在(2)的条件下,是否存在点
,使得四边形的面积
与
的面积相等?若存在,请求出点
的坐标;若不存在,请说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】一只蚂蚁在一个半圆形的花坛的周边寻找食物,如图1,蚂蚁从圆心
出发,按图中箭头所示的方向,依次匀速爬完下列三条线路:(1)线段
、(2)半圆弧
、(3)线段
后,回到出发点.蚂蚁离出发点的距离
(蚂蚁所在位置与
点之间线段的长度)与时间
之间的图象如图2所示,问:(注:圆周率
的值取3)
![]()
(1)请直接写出:花坛的半径是 米,
.
(2)当
时,求
与
之间的关系式;
(3)若沿途只有一处有食物,蚂蚁在寻找到食物后停下来吃了2分钟,并知蚂蚁在吃食物的前后,始终保持爬行且爬行速度不变,请你求出:
①蚂蚁停下来吃食物的地方,离出发点的距离.
②蚂蚁返回
所用时间.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,将△ABC向右平移3个单位长度,然后再向上平移2个单位长度,可以得到△A1B1C1(点A的对应点是A1,点B的对应点是B1,点C的对应点是C1).
(1)画出平移后的△A1B1C1;
(2)求△ABC的面积;
(3)已知点P在x轴上,以A1、B1、P为顶点的三角形面积为6,求点P的坐标.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=x2﹣4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y=x+m与对称轴交于点Q.
(1)这条抛物线的对称轴是 ,直线PQ与x轴所夹锐角的度数是 ;
(2)若两个三角形面积满足S△POQ=
S△PAQ,求m的值;
(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ的最大值;②PDDQ的最大值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O.点C在点P右侧,PC=4,过点C作直线m⊥l,过点O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=
CD,以DE,DF为邻边作矩形DEGF.设AQ=3x.
(1)用关于x的代数式表示BQ,DF.
(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.
(3)在点P的整个运动过程中,
①当AP为何值时,矩形DEGF是正方形?
②作直线BG交⊙O于点N,若BN的弦心距为1,求AP的长(直接写出答案).
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读材料:
在一个三角形中,各边和它所对角的正弦的比相等,
,利用上述结论可以求解如下题目:
在△ABC中,∠A、∠B、∠C的对边分别为a,b,c.若∠A=45°,∠B=30°,a=6,求b.
解:在△ABC中,∵![]()
∴b=
.
理解应用:
如图,甲船以每小时30
海里的速度向正北方向航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,且乙船从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟到达A2时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10
海里.
(1)判断△A1A2B2的形状,并给出证明;
(2)求乙船每小时航行多少海里?
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】(8分)如图,已知直线y=x+k和双曲线y=
(k为正整数)交于A,B两点.
(1)当k=1时,求A、B两点的坐标;
(2)当k=2时,求△AOB的面积;
(3)当k=1时,△OAB的面积记为S1,当k=2时,△OAB的面积记为S2,…,依此类推,当k=n时,△OAB的面积记为Sn,若S1+S2+…+Sn=
,求n的值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,∠BAC=45°,以AB为直径的圆分别交BC,AC于D,E两点,AD交BE于F点,现给出下列命题:①
DE+BD=AD;②△ABE与△ABD的面积差为
ED2 , 则( )
![]()
A.①是假命题,②是真命题 B.①是真命题,②是假命题
C.①是假命题,②是假命题 D.①是真命题,②是真命题
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:
①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是( )
![]()
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com