科目: 来源: 题型:
【题目】如图,我把对角线互相垂直的四边形叫做“垂美四边形”.
(1)性质探究:如图1.已知四边形ABCD中,AC⊥BD,垂足为O,求证:AB2+CD2=AD2+BC2.
(2)解决问题:已知AB=5,BC=4,分别以△ABC的边BC和AB向外作等腰Rt△BCQ和等腰Rt△ABP.
①如图2,当∠ACB=90°,连接PQ,求PQ;
②如图3,当∠ACB≠90°,点M、N分别是AC、AP中点连接MN.若MN=
,则S△ABC= .
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,在△ABC中,点D为AB的中点,过点D作DE∥BC交AC于E.
(1)求证:E为AC的中点;
(2)如图2,过点D作QD⊥AB交BC的延长线于Q,过点E作EP⊥AC交CB的延长线于P,连AP、AQ.若PQ=12,AP+AQ=20,求DE的长.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】一只不透明的袋子中装有1个蓝球和2个红球,这些球除颜色外都相同.
(1)搅匀后从中任意摸出1个球,求摸到蓝球的概率;
(2)搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球.
求至少有1次摸到红球的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】某超市举行店庆活动,对甲、乙两种商品实行打折销售,打折前,购买2件甲商品和3件乙商品需要180元;购买1件甲商品和4件乙商品需要200元,而店庆期间,购买10件甲商品和10件乙商品仅需520元,这比打折前少花多少钱?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AD//EF,∠1+∠2=180°,
(1)若∠1=50°,求∠BAD的度数;
(2)若DG⊥AC,垂足为G,∠BAC=90°,试说明:DG平分∠ADC.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,将三角形ABC向左平移至点B与原点重合,得三角形A′OC′.
(1)直接写出三角形ABC的三个顶点的坐标A ,B ,C ;
(2)画出三角形A′OC′;
(3)求三角形ABC的面积.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN=__.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直角坐标系中的网格由单位正方形构成,△ABC中,A点坐标为(2,3),B点坐标为(﹣2,0),C点坐标为(0,﹣1).
(1)S△ABC= ;
(2)若以A、B、C及点D为顶点的四边形为平行四边形,试在图中画出所有D点的位置并求出这些平行四边形中最长的对角线长为 ,最短的对角线长为 .
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC.
(1)求证:AC平分∠BAD;
(2)若AB=6,AC=4
,求EC和PB的长.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】定义:如果过三角形一个顶点的直线与对边所在直线相交,得到的三角形中有一个与原三角形相似,那么我们称这样的直线为三角形的相似线.
如图1,△ABC中,直线CD与AB交于点D,若△ACD∽△ABC,则称直线CD是△ABC的相似线.
![]()
解决问题:
已知:如图2,在△ABC中,∠BAC>∠ACB >∠ABC.
求作:△ABC的相似线.
![]()
(1)小明用如下方法作出△ABC的一条相似线:
作法:如图3,①作△ABC的外接圆⊙O;
②以C为圆心,AC的长为半径画弧,与⊙O交于点P;
③连接AP,交BC于点D.
则直线AD为△ABC的相似线.
请你证明小明的作法的正确性.
(2)过A点还有其它的△ABC的相似线,请你参考(1)中的作法与结论,利用尺规作图,在图3中再作出一条△ABC的相似线AE;(写出作法,保留作图痕迹,不要证明)
(3)若△ABC中,∠BAC=90°,则△ABC中过A点的相似线有 条,过B点的相似线有 条.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com