相关习题
 0  354060  354068  354074  354078  354084  354086  354090  354096  354098  354104  354110  354114  354116  354120  354126  354128  354134  354138  354140  354144  354146  354150  354152  354154  354155  354156  354158  354159  354160  354162  354164  354168  354170  354174  354176  354180  354186  354188  354194  354198  354200  354204  354210  354216  354218  354224  354228  354230  354236  354240  354246  354254  366461 

科目: 来源: 题型:

【题目】小王上周买进某种股票1000股,每股27元。

1)星期三收盘时,每股是多少元?

2)本周内最高价是每股多少元?最低价是每股多少元?

3)若小王在本周五的收盘价将股票全部卖出,你认为他会获利吗?

查看答案和解析>>

科目: 来源: 题型:

【题目】△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.

(1)观察猜想

如图1,当点D在线段BC上时,

①BC与CF的位置关系为:   

②BC,CD,CF之间的数量关系为:   ;(将结论直接写在横线上)

(2)数学思考

如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.

(3)拓展延伸

如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司从2014年开始投入技术改进资金,经技术改进后,其产品的成本不断降低,具体数据如下表:

2013

2014

2015

2016

投入技改资金(万元)

2.5

3

4

4.5

产品成本(万元/件)

7.2

6

4.5

4

1)请你认真分析表中数据,从一次函数和反比例函数中确定哪一个函数能表示其变化规律,给出理由,并求出其解析式;

2)按照这种变化规律,若2017年已投入资金5万元.

①预计生产成本每件比2016年降低多少万元?

②若打算在2017年把每件产品成本降低到3.2万元,则还需要投入技改资金多少万元?(结果精确到0.01万元).

查看答案和解析>>

科目: 来源: 题型:

【题目】为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示.请根据图表信息解答下列问题:

(1)在表中:m= ,n=

(2)补全频数分布直方图;

(3)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在 组;

(4)4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中A、C两组学生的概率是多少?并列表或画树状图说明.

查看答案和解析>>

科目: 来源: 题型:

【题目】某司机在东西路上开车接送乘客,他早晨从A地出发,(去向东的方向正方向),到晚上送走最后一位客人为止,他一天行驶的的里程记录如下(单位:㎞)

+10 — 5—15 + 30 —20 —16 + 14

1) 若该车每百公里耗油 3 L ,则这车今天共耗油 多少升?

2) 据记录的情况,你能否知道该车送完最后一个乘客是,他在A地的什么方向?距A地多远?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DF,连接CE、AF.

(1)证明:AF=CE;

(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,但是由于12,所以的整数部分为1,将减去其整数部分1,差就是小数部分,根据以上的内容,解答下面的问题:

1的整数部分是______,小数部分是______

2的整数部分是______,小数部分是_____

3)若设整数部分是x,小数部分是y,求xy的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:

将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2

证明:连接DB,过点DBC边上的高DF,则DF=EC=ba

S四边形ADCB=SACD+SABC=b2+ab

又∵S四边形ADCB=SADB+SDCB=c2+aba

b2+ab=c2+aba

a2+b2=c2

请参照上述证法,利用图2完成下面的证明.

将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2

证明:连结______,过点B________,则____________.

S五边形ACBED=SACB+SABE+SADE=____________.

又∵S五边形ACBED=______________=ab+c2+aba),

___________________=ab+c2+aba),

a2+b2=c2

查看答案和解析>>

科目: 来源: 题型:

【题目】动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点AB的运动速度比之是32(速度单位:1个单位长度/秒).

1)求两个动点运动的速度;

2AB两点运动到3秒时停止运动,请在数轴上标出此时AB两点的位置;

3)若AB两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:经过几秒钟,AB两点之间相距4个单位长度?

查看答案和解析>>

科目: 来源: 题型:

【题目】2017湖南省益阳市)在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(﹣35)与(5,﹣3)是一对“互换点”.

1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?

2MN是一对“互换点”,若点M的坐标为(mn),求直线MN的表达式(用含mn的代数式表示);

3)在抛物线的图象上有一对“互换点”AB,其中点A在反比例函数的图象上,直线AB经过点P),求此抛物线的表达式.

查看答案和解析>>

同步练习册答案