相关习题
 0  354717  354725  354731  354735  354741  354743  354747  354753  354755  354761  354767  354771  354773  354777  354783  354785  354791  354795  354797  354801  354803  354807  354809  354811  354812  354813  354815  354816  354817  354819  354821  354825  354827  354831  354833  354837  354843  354845  354851  354855  354857  354861  354867  354873  354875  354881  354885  354887  354893  354897  354903  354911  366461 

科目: 来源: 题型:

【题目】植树节来临之际,学校准备购进一批树苗,已知2棵甲种树苗和5棵乙种树苗共需113元;3棵甲种树苗和2棵乙种树苗共需87元.

(1)求一棵甲种树苗和一棵乙种树苗的售价各是多少元?

(2)学校准备购进这两种树苗共100棵,并且乙种树苗的数量不多于甲种树苗数量的2倍,请设计出最省钱的购买方案,并求出此时的总费用.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知一副三角板按如图1方式拼接在一起,其中边与直线重合,

1)图 1 中,=______°

2)如图2,三角板固定不动,将三角板绕点按顺时针方向旋转一个角度,在转动过程中两块三角板都在直线的上方:

①当平分其中的两边组成的角时,求满足要求的所有旋转角度的值;

②是否存在?若存在,求此时的的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校开展“校园献爱心”活动.准备向西部山区学校捐赠男、女两种款式的书包,已知男款书包单价/个,女款书包单价/.

原计划募捐元,恰好可购买两种款式的书包个,问两种款式的书包各买多少个?

在捐款活动中,师生积极性高,实际捐款额和书包数量都高于原计划.快递公司将这些书包装箱运送,其中每箱书包数量相同.第一次他们领走这批的,结果装了箱还多个书包;第二次他们把余下的领走.连同第一次装箱剩下的个书包一起,刚好装了.:实际购买书包共多少个?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四边形ABCD是菱形,对角线ACBD相交于点OAC=8cmBD=6cmDHABH

1)求菱形ABCD的面积;

2)求DH的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知两个多项式A=9xy7xyx2,B=3xy5xyx7

1)求A3B;

2)若要使A3B的值与x的取值无关,试求y的值;

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:

(1)画出ABC关于x轴对称的A1B1C1,并写出点A1的坐标.

(2)画出A1B1C1绕原点O旋转180°后得到的A2B2C2,并写出点A2的坐标.

【答案】(1)作图见解析;点A1的坐标(2,﹣4);(2)作图见解析;点A2的坐标(﹣2,4).

【解析】

试题分析:(1)分别找出A、B、C三点关于x轴的对称点,再顺次连接,然后根据图形写出A点坐标;

(2)将A1B1C1中的各点A1、B1、C1绕原点O旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得A2B2C2

试题解析:(1)如图所示:点A1的坐标(2,﹣4);

(2)如图所示,点A2的坐标(﹣2,4).

考点:1.作图-旋转变换;2.作图-轴对称变换.

型】解答
束】
18

【题目】观察下面的点阵图和相应的等式,探究其中的规律:

(1)认真观察,并在④后面的横线上写出相应的等式.

1=1 1+2==3 1+2+3==6    

(2)结合(1)观察下列点阵图,并在⑤后面的横线上写出相应的等式.

1=121+3=223+6=326+10=42   

(3)通过猜想,写出(2)中与第n个点阵相对应的等式   

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图, AF平分∠BACBC⊥AF, 垂足为E,点D与点A关于点E对称,PB分别与线段CFAF相交于PM

1)求证:AB=CD

2)若∠BAC=2∠MPC,请你判断∠F∠MCD的数量关系,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,一次函数y=x﹣2与反比例函数y=(x>0)的图象相交于点M(m,1).

(1)填空:m的值为   ,反比例函数的解析式为   

(2)已知点N(n,n),过点Nl1x轴,交直线y=x﹣2于点A,过点Nl2y轴,交反比例函数y=(x>0)的图象与点B,试用n表示NAB的面积S.

查看答案和解析>>

科目: 来源: 题型:

【题目】12分)如图是某种窗户的形状,其上部是半圆形,下部是边长相同的四个小正方形,已知下部的小正方形的边长为am,计算:

1)窗户的面积;

2)窗框的总长;

3)若a1,窗户上安装的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不计,求制作这种窗户需要的费用是多少元(π取3.14,结果保留整数).

查看答案和解析>>

科目: 来源: 题型:

【题目】同时抛掷AB两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为xy,并以此确定点P(xy),那么点P落在直线y=-2x+9上的概率为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案