科目: 来源: 题型:
【题目】如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于点A(
,
),B(4,m),点P是线段AB上异于A,B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)求抛物线的解析式;
(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】一家商店因换季将某种服装打折销售,每件服装如果按标价的4折出售将亏40元,而按标价8折出售将赚40元.问:
(1)每件服装的标价是多少元?
(2)每件服装的成本是多少元?
(3)为了保证不亏损,最多可以打几折?
查看答案和解析>>
科目: 来源: 题型:
【题目】光明中学组织全校1000名学生进行了校园安全知识竞赛.为了解本次知识竞赛的成绩分布情况,从中随机抽取了部分学生的成绩(得分取正整数,满分为100分),并绘制了如图的频数分布表和频数分布直方图(不完整).
分组 | 频数 | 频率 |
50.5~60.5 | 10 | a |
60.5~70.5 | b | |
70.5~80.5 | 0.2 | |
80.5~90.5 | 52 | 0.26 |
90.5~100.5 | 0.37 | |
合计 | c | 1 |
![]()
请根据以上提供的信息,解答下列问题:
(1)直接写出频数分布表中a,b,c的值,补全频数分布直方图.
(2)上述学生成绩的中位数落在哪一组范围内?
(3)学校将对成绩在90.5~100.5分之间的学生进行奖励,请估计全校1000名学生中约有多少名获奖?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四边形
是边长为4的正方形点P为OA边上任意一点(与点
不重合),连接CP,过点P作
,且
,过点M作
,交
于点
联结
,设
.
(1)当
时,点
的坐标为( , )
(2)设
,求出
与
的函数关系式,写出函数的定义域。
(3)在
轴正半轴上存在点
,使得
是等腰三角形,请直接写出不少于4个符合条件的点
的坐标(用
的式子表示)
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.
(1)将△ABC向右平移2个单位长度,作出平移后的△A1B1C1,并写出△A1B1C1各顶点的坐标.
(2)若将△ABC绕点(-1,0)顺时针旋转180°后得到△A2B2C2,并写出△A2B2C2各顶点的坐标.
(3)观察△A1B1C1和△A2B2C2,它们是否关于某点成中心对称?若是,请写出对称中心的坐标;若不是,说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图:在数轴上
点表示数
,
点表示数
,
点表示数
,
是最大的负整数,且
满足
与
互为相反数.
![]()
(1)
__________,
__________,
__________;
(2)若将数轴折叠,使得
点与
点重合,则点
与数_________表示的点重合;
(3)点
、
、
开始在数轴上运动,若点
以每秒2个单位长度的速度向左运动,同时,点
和点
分别以每秒1个单位长度和3个单位长度的速度向右运动,假设
秒钟过后,若点
与点
之间的距离表示为
,点
与点
之间的距离表示为
,请问:
的值是否随着时间
的变化而改变?若变化,请说明理由;若不变,请求其值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直线
分别与
轴、
轴交于
两点,与直线
交于点
.
(1)点
坐标为( , ),B为( , ).
(2)在线段
上有一点
,过点
作
轴的平行线交直线
于点
,设点
的横坐标为
,若四边形
是平行四边形时,求出此时
的值.
(3)若点
为
轴正半轴上一点,且
,则在轴上是否存在一点
,使得
四个点能构成一个梯形若存在,求出所有符合条件的
点坐标;若不存在,请说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】(本题满分6分)如图所示的方格地面上,标有编号1、2、3的3
![]()
个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地
面完全相同.
(1)一只自由飞行的小鸟,将随意地落在图中所示的方格地面上,求
小鸟落在草坪上的概率;
(2)现准备从图中所示的3个小方格空地中任意选取2个种植草坪,
则编号为1、2的2个小方格空地种植草坪的概率是多少(用树状图或列表法求解)?
查看答案和解析>>
科目: 来源: 题型:
【题目】探索n×n的正方形钉子板上(n是钉子板每边上的钉子数,每边上相邻钉子间的距离为1),连接任意两个钉子所得到的不同长度值的线段种数:
当n=2时,钉子板上所连不同线段的长度值只有1与
,所以不同长度值的线段只有2种,若用S表示不同长度值的线段种数,则S=2;
当n=3时,钉子板上所连不同线段的长度值只有1,
,2,
,2
五种,比n=2时增加了3种,即S=2+3=5.
(1)观察图形,填写下表:
钉子数(n×n) | S值 |
2×2 | 2 |
3×3 | 2+3 |
4×4 | 2+3+(____) |
5×5 | (________) |
(2)写出(n-1)×(n-1)和n×n的两个钉子板上,不同长度值的线段种数之间的关系;(用式子或语言表述均可).
(3)对n×n的钉子板,写出用n表示S的代数式.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com