相关习题
 0  355557  355565  355571  355575  355581  355583  355587  355593  355595  355601  355607  355611  355613  355617  355623  355625  355631  355635  355637  355641  355643  355647  355649  355651  355652  355653  355655  355656  355657  355659  355661  355665  355667  355671  355673  355677  355683  355685  355691  355695  355697  355701  355707  355713  355715  355721  355725  355727  355733  355737  355743  355751  366461 

科目: 来源: 题型:

【题目】某校八年级数学实践能力考试选择项目中,选择数据收集项目和数据分析项目的学生比较多。为了解学生数据收集和数据分析的水平情况,进行了抽样调查,过程如下,请补充完整.收集数据:从选择数据收集和数据分析的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:

数据收集

10

9.5

9.5

10

8

9

9.5

9

7

10

4

5.5

10

7.9

9.5

10

数据分析

9.5

9

8.5

8.5

10

9.5

10

8

6

9.5

10

9.5

9

8.5

9.5

6

整理,描述数据:按如下分数段整理,描述这两组样本数据:

10

数据收集

1

1

3

6

5

数据分析

(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格.

分析数据:两组样本数据的平均数,中位数,众数如下表所示:

项目

平均数

中位数

众数

数据收集

8.75

9.5

10

数据分析

8.81

9.25

9.5

得出结论:

1)如果全校有480人选择数据收集项目,达到优秀的人数约为________人;

2)初二年级的井航和凯舟看到上面数据后,井航说:数据分析项目整体水平较高.凯舟说:数据收集项目整体水平较高.你同意________的看法,理由为_______________________.(至少从两个不同的角度说明推断的合理性)

查看答案和解析>>

科目: 来源: 题型:

【题目】探究:如图①,ABCDEF,点GPH分别在直线ABCDEF上,连结PGPH,当点P在直线GH的左侧时,试说明∠AGP+EHP=∠GPH.下面给出了这道题的解题过程,请完成下面的解题过程,并填空(理由或数学式).

解:如图①,∵ABCD   

∴∠AGP=∠GPD

CDEF

∴∠DPH=∠EHP   

∵∠GPD+DPH=∠GPH

∴∠AGP+EHP=∠GPH   

拓展:将图①的点P移动到直线GH的右侧,其他条件不变,如图②.试探究∠AGP、∠EHP、∠GPH之间的关系,并说明理由.

应用:如图③,ABCDEF,点GH分别在直线ABEF上,点Q是直线CD上的一个动点,且不在直线GH上,连结QGQH.若∠GQH70°,则∠AGQ+EHQ   度.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知点A、B、C在同一直线上,M、N分别是AB,BC的中点.

(1)AB=20,BC =8,求MN的长;

(2)AB =a,BC =8,求MN的长;

(3)AB =a,BC =b,求MN的长;

(4)(1)(2)(3)的结果中能得到什么结论?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.

(1)求证:CE=CF;

(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?

查看答案和解析>>

科目: 来源: 题型:

【题目】某校课外兴趣小组在本校学生中开展“感动中国2013年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类.其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如下表:

类别

A

B

C

D

频数

30

40

24

b

频率

a

0.4

0.24

0.06

(1)表中的a=   ,b=   

(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;

(3)若该校有学生1000名,根据调查结果估计该校学生中类别为C的人数约为多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】定义:若线段上的一个点把这条线段分成12的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且ACCB12,则点C是线段AB的一个三等分点,显然,一条线段的三等分点有两个.

1)已知:如图2DE15cm,点PDE的三等分点,求DP的长.

2)已知,线段AB15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.

若点PQ同时出发,且当点P与点Q重合时,求t的值.

若点PQ同时出发,且当点P是线段AQ的三等分点时,求t的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平行四边形ABCD中,过点A作对角线BD的垂线,垂足为E,点FAD的中点,连接FE并延长交BC于点G

1)求证:

2)若,求BG的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,OM是∠AOC的平分线,ON是∠BOC的平分线.

1)如图1,当∠AOB90°,∠BOC60°时,∠MON的度数是多少?为什么?

2)如图2,当∠AOB70°,∠BOC60°时,∠MON   度.(直接写出结果)

3)如图3,当∠AOBα,∠BOCβ时,猜想:∠MON的度数是多少?为什么?

查看答案和解析>>

科目: 来源: 题型:

【题目】某车间有60个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件24个或乙种零件12个已知每2个甲种零件和3个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°AC=1cmBC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为xs),线段AP的长度为ycm),则能够反映yx之间函数关系的图象大致是( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案