科目: 来源: 题型:
【题目】如图,已知点
是定长线段
上一定点.点
在线段
上,点
在线段
上,
、
两点分别从
、
出发,分别以
/
、
/
的速度沿直线
同时向左运动.
(1)若
,当点
、
运动了
,求
的值;
(2)若点
、
运动时,总有
,则
_____
;
(3)在(2)的条件下,点
是直线
上一点,且
,求
的值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知正方形
的边长为
,点
是
边上的一个动点,连接
,过点
作
的垂线交
于点
,以
为边作正方形
,顶点
在线段
上,对角线
、
相交于点
.(1)若
,则
;
(2)①求证:点
一定在
的外接圆上;
②当点
从点
运动到点
时,点
也随之运动,求点
经过的路径长;
(3)在点
从点
到点
的运动过程中,
的外接圆的圆心也随之运动,求该圆心到
边的距离的最大值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】我们规定,若关于 x 的一元一次方程 ax=b 的解为 x=ba,则称该方程的为差解方程,例如:3x=
的解为x=
且
=
-3,则该方程3x=
就是差解方程.
请根据以上规定解答下列问题
(1)若关于 x 的一元一次方程-5x=m+1 是差解方程,则 m=_____.
(2)若关于 x 的一元一次方程 2x=ab+3a+1 是差解方程,且它的解为 x=a,求代数式(ab+2)2019的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在Rt△ABC中,∠A=90°,点D,E分别在AC,BC上,且CD·BC=AC·CE,以E为圆心,DE长为半径作圆,⊙E经过点B,与AB,BC分别交于点F,G.
(1)求证:AC是⊙E的切线;
(2)若AF=4,CG=5,
①求⊙E的半径;
②若Rt△ABC的内切圆圆心为I,则IE= .
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】将正整数 1 至 2024 按一定规律排列成如图所示的 8 列,规定从上到下依次为第 1 行,第 2 行,第 3 行,…从左往右依次为第 1 列至第 8 列.
![]()
(1)数 56 在第 行 列 ;
(2)平移图中带阴影的方框,使方框框住相邻的三个数,若被框住的三个数中最大的一个数为 x,则被框的三个数的和能否等于 2019?若能,请求出 x;若不能,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:
(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:_________;
(2)仔细观察,在图2中“8字形”的个数_________个;
(3)在图2中,若∠D=40°,∠B=36°,试求∠P的度数;
(4)如果图2中∠D和∠B为任意角,其他条件不变,试问∠P与∠D,∠B之间存在着怎样的数量关系(直接写出结论即可)
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】甲乙两地相距400千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地的路程y(千米)与所用时间x(小时)之间的函数关系,折线BCD表示轿车离甲地的路程y(千米)与x(小时)之间的函数关系,根据图象解答下列问题:
![]()
(1)求线段CD对应的函数表达式;
(2)求E点的坐标,并解释E点的实际意义;
(3)若已知轿车比货车晚出发2分钟,且到达乙地后在原地等待货车,则当x= 小时,货车和轿车相距30千米.
查看答案和解析>>
科目: 来源: 题型:
【题目】二次函数
的图象经过点(2,1),(0,1).
(1)求该二次函数的表达式及函数图象的顶点坐标和对称轴;
(2)若点P
),Q
)在抛物线上,试判断
与
的大小.(写出判断的理由)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:如图,△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°,点C、D、E三点在同一直线上,连接BD.
![]()
(1)求证:△BAD≌△CAE;
(2)试猜想BD、CE有何特殊位置关系,并证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com