相关习题
 0  356660  356668  356674  356678  356684  356686  356690  356696  356698  356704  356710  356714  356716  356720  356726  356728  356734  356738  356740  356744  356746  356750  356752  356754  356755  356756  356758  356759  356760  356762  356764  356768  356770  356774  356776  356780  356786  356788  356794  356798  356800  356804  356810  356816  356818  356824  356828  356830  356836  356840  356846  356854  366461 

科目: 来源: 题型:

【题目】如图,ABC中,AB=BC,BDAC于点D,FAC=ABC,且∠FACAC下方.点P,Q分别是射线BD,射线AF上的动点,且点P不与点B重合,点Q不与点A重合,连接CQ,过点PPECQ于点E,连接DE.

(1)若∠ABC=60°,BP=AQ.

①如图1,当点P在线段BD上运动时,请直接写出线段DE和线段AQ的数量关系和位置关系;

②如图2,当点P运动到线段BD的延长线上时,试判断①中的结论是否成立,并说明理由;

(2)若∠ABC=2α≠60°,请直接写出当线段BP和线段AQ满足什么数量关系时,能使(1)中①的结论仍然成立(用含α的三角函数表示).

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,RtABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E.

(1)判断直线CD与⊙O的位置关系,并说明理由;

(2)若BE=4,DE=8,求AC的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点P是等边△ABC的边上的一个做匀速运动的动点,其由点A开始沿AB边运动到B再沿BC边运动到C为止,设运动时间为t,△ACP的面积为S,则St的大致图象是(  )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】为落实美丽抚顺的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.

(1)甲、乙两工程队每天能改造道路的长度分别是多少米?

(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DADB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°60°(图中的点A、B、C、D、M、N均在同一平面内,CMAN).

(1)求灯杆CD的高度;

(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目: 来源: 题型:

【题目】一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:

(1)甲、乙两组工作一天,商店应各付多少元?

(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?

查看答案和解析>>

科目: 来源: 题型:

【题目】抚顺市某校想知道学生对遥远的赫图阿拉”,“旗袍故里等家乡旅游品牌的了解程度,随机抽取了部分学生进行问卷调查,问卷有四个选项(每位被调查的学生必选且只选一项)A.十分了解,B.了解较多,C.了解较少,D.不知道.将调查的结果绘制成如下两幅不完整的统计图,请根据两幅统计图中的信息回答下列问题:

(1)本次调查了多少名学生?

(2)补全条形统计图;

(3)该校共有500名学生,请你估计十分了解的学生有多少名?

(4)在被调查十分了解的学生中有四名学生会干部,他们中有3名男生和1名女生,学校想从这4人中任选两人做家乡旅游品牌宣传员,请用列表或画树状图法求出被选中的两人恰好是一男一女的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正方形AOBO2的顶点A的坐标为A(0,2),O1为正方形AOBO2的中心;以正方形AOBO2的对角线AB为边,在AB的右侧作正方形ABO3A1,O2为正方形ABO3A1的中心;再以正方形ABO3A1的对角线A1B为边,在A1B的右侧作正方形A1BB1O4,O3为正方形A1BB1O4的中心;再以正方形A1BB1O4的对角线A1B1为边在A1B1的右侧作正方形A1B1O5A2,O4为正方形A1B1O5A2的中心:;按照此规律继续下去,则点O2018的坐标为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】下列说法:

①在同一平面内,四条边相等的四边形一定是菱形。

②顺次连接矩形各边中点形成的四边形一定是正方形。

③对角线相等的四边形一定是矩形。

④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分。

其中正确的有( )个.

A.4B.3C.2D.1

查看答案和解析>>

科目: 来源: 题型:

【题目】(问题情境)如图①,在△ABC中,若AB10AC6,求BC边上的中线AD的取值范围.

1)(问题解决)延长AD到点E使DEAD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把ABAC2AD集中在△ABE中,利用三角形三边的关系即可判断出中线AD的取值范围是   

(反思感悟)解题时,条件中若出现“中点”、“中线”字样,可以考虑构造以该中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同个三角形中,从而解决问题.

2)(尝试应用)如图②,△ABC中,∠BAC90°,ADBC边上的中线,试猜想线段ABACAD之间的数量关系,并说明理由.

3)(拓展延伸)如图③,△ABC中,∠BAC90°,DBC的中点,DMDNDMAB于点MDNAC于点N,连接MN.当BM4MN5AC6时,请直接写出中线AD的取值范围.(温馨提示:如果设直角三角形的两条直角边长度分别是ab,斜边长度是c,那么可以用数学语言表达三边关系,a2+b2c2)

查看答案和解析>>

同步练习册答案