相关习题
 0  356842  356850  356856  356860  356866  356868  356872  356878  356880  356886  356892  356896  356898  356902  356908  356910  356916  356920  356922  356926  356928  356932  356934  356936  356937  356938  356940  356941  356942  356944  356946  356950  356952  356956  356958  356962  356968  356970  356976  356980  356982  356986  356992  356998  357000  357006  357010  357012  357018  357022  357028  357036  366461 

科目: 来源: 题型:

【题目】某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.

(1)按约定,“小李同学在该天早餐得到两个油饼”是 事件;(可能,必然,不可能)

(2)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】在一次数学课上,老师对大学说:你任意想一个非零实数,然后按下列步骤操作,我会直接说出你运算的最后结果

操作步骤如下:

第一步:计算这个数与1的和的平方,减去这个数与1的差的平方

第二步:把第一步得到的数乘以25

第三步:把第二步得到的数除以你想的这个数

1)若小明同学心里想的是数9,请帮他计算出最后结果:

.

2)老师说:同学们,无论你们心里想的是什么非零实数,按照以上步骤进行操作,得到的最后结果都相等,小明同学想验证这个结论,于是,设心里想的数是aa0),请你帮小明完成这个验证过程

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,线段AB9,射线BGAB,P为射线BG上一点,AP为边作正方形APCD,CD与点BAP两侧,在线段DP取一点E,使∠EAP=∠BAP,直线CE与线段AB相交于点F(F与点AB不重合).

(1)求证:△AEP≌△CEP

(2)判断CFAB的位置关系,并说明理由;

(3)求△AEF的周长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,△ABC三个顶点的坐标分别为A11),B42),C34).

1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1

2)请画出△ABC关于原点对称的△A2B2C2

3)在x轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】在同一直角坐标系中,函数y=mx+m和函数y=mx2+2x+2(m是常数,且m≠0)的图象可能是(  )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有(  )

A. 2个 B. 3个 C. 4个 D. 5个

查看答案和解析>>

科目: 来源: 题型:

【题目】某中学六七年级有350名同学去春游,已知2A型车和1B型车可以载学生100人;1A型车和2B型车可以载学生110人.

1AB型车每辆可分别载学生多少人?

2)若租一辆A需要100元,一辆B120元,请你设计租车方案,使得恰好运送完学生并且租车费用最少.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点EABCD内部,AFBEDFCE.

(1)求证:△BCE≌△ADF

(2)ABCD的面积为20,求四边形AEDF的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,DBC边上的一点,ABDBBE平分∠ABC,交AC边于点E,连接DE

(1)求证:△ABE≌△DBE

(2)若∠A100°,∠C50°,求∠AEB的度数.

查看答案和解析>>

科目: 来源: 题型:

【题目】在正方形ABCD中,点E、F分别在边BC、CD上,且∠EAF=CFF=45°

(1) ADF绕点A顺时针旋转90 °,得到ABG(如图1),求证:BE+DF=EF;

(2) 若直线EFAB、AD的延长线分别交于点M、N(如图2),求证:

(3) 将正方形改为长与宽不相等的矩形,其余条件不变(如图3),直接写出线段EF、BE、DF之间的数量关系.

查看答案和解析>>

同步练习册答案