科目: 来源: 题型:
【题目】如图,已知四边形ABCD中,AB//DC,AB=DC,且AB=6cm,BC=8cm,对角线AC =10cm,
(1)求证:四边形ABCD是矩形;
(2)如图(2),若动点Q从点C出发,在CA边上以每秒5cm的速度向点A匀速运动,同时动点P从点B出发,在BC边上以每秒4cm的速度向点C匀速运动,运动时间为t秒(0≤t<2),连接BQ、AP,若AP⊥BQ,求t的值;
(3)如图(3),若点Q在对角线AC上,CQ=4cm,动点P从B点出发,以每秒1cm的速度沿BC运动至点C止.设点P运动了t秒,请你探索:从运动开始,经过多少时间,以点Q、P、C为顶点的三角形是等腰三角形?请求出所有可能的结果.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,已知抛物线与x轴交于A、B两点(点A在点B的左侧),交y轴的正半轴于点C,其顶点为M,MH⊥x轴于点H,MA交y轴于点N,sin∠MOH=.
(1)求此抛物线的函数表达式;
(2)过H的直线与y轴相交于点P,过O,M两点作直线PH的垂线,垂足分别为E,F,若 时,求点P的坐标;
(3)将(1)中的抛物线沿y轴折叠,使点A落在点D处,连接MD,Q为(1)中的抛物线上的一动点,直线NQ交x轴于点G,当Q点在抛物线上运动时,是否存在点Q,使△ANG 与△ADM相似?若存在,求出所有符合条件的直线QG的解析式;若不存在,请说明理由。
查看答案和解析>>
科目: 来源: 题型:
【题目】将一副直角三角板如图1,摆放在直线上(直角三角板和直角三角板,,,,,保持三角板不动,将三角板绕点以每秒5°的速度顺时针旋转,旋转时间为t秒.当与射线意合时停止旋转.
(1)如图2.当为的角平分线时,求此时的值?
(2)当旋转至的内部时,求与的数量关系?
(3)在旋转过程中,当三角板的其中一边平行于三角板的某一边时,求此时等于______.(直接写出答案即可)
查看答案和解析>>
科目: 来源: 题型:
【题目】踏春时节,某班学生集体组织亲子游,沿着瓯江口樱花步道骑自行车,该班学生花了950元租了若干辆自行车,已知自行车的类型和租车价格如下表:
自行车类型 | 型车 | 型车 | 型车 |
座位教(个) | 2 | 3 | 4 |
租车价格(元/辆) | 30 | 45 | 55 |
(1)若同时租用、两种类型的车,且共有65个座位,则应租、类型车各多少辆?
(2)若型车租4辆,余下的租用型和型,要求每种车至少租用1辆,请你帮他们设计型车和型车的租车方案.
(3)若同时租用这三类车,且每种车至少租用1辆,则最多能租到______个座位.(直接写出答案)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,线段AB=4,C为线段AB上的一个动点,以AC、BC为边作等边△ACD和等边△BCE,⊙O外接于△CDE,则⊙O半径的最小值为( )
A. 4 B. C. D. 2
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,长方形恰好被分割成3个边长为的大正方形和4个边长为的小正方形,取1个大正方形和2个小正方形将两个小正方形放置在大正方形中(如图2所示).若图2中阴影都分的面积比四边形的面积小80,则边长为的正方形面积是________.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四边形ABCD与四边形OEFG都是正方形,O是正方形ABCD的中心,OE交BC于点M,OG交CD于点N,下列结论:①△ODG≌△OCE;②GD=CE;③OG⊥CE;④若正方形ABCD的边长为2,则四边形OMCN的面积等于1,其中正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,若△CEF的面积为12cm2,则S△DGF的值为( )
A.4cm2 B.6cm2 C.8cm2 D.9cm2
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,点A,B的坐标分别为A(0,a),B(b,a),且a、b满足(a﹣2)2+|b﹣4|=0,现同时将点A,B分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.
(1)求点C,D的坐标及四边形ABDC的面积S四边形ABCD;
(2)在y轴上是否存在一点M,连接MC,MD,使S△MCD=S四边形ABDC?若存在这样一点,求出点M的坐标,若不存在,试说明理由;
(3)点P是直线BD上的一个动点,连接PA,PO,当点P在BD上移动时(不与B,D重合),直接写出∠BAP、∠DOP、∠APO之间满足的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com