科目: 来源: 题型:
【题目】一个数值转换器,如图所示:
![]()
(1)当输入的x为16时.输出的y值是 ;
(2)若输入有效的x值后,始终输不出y值,请写出所有满足要求的x的值,并说明你的理由;
(3)若输出的y是
,请写出两个满足要求的x值: .
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读下面的文字,解答问题:
大家知道
是无理数,而无理数是无限不循环小数,因此
的小数部分我们不可能全部地写出来,于是小明用
-1来表示
的小数部分,你同意小明的表示方法吗?
事实上,小明的表示方法是有道理,因为
的整数部分是1,将这个数减去其整数部分,差就是小数部分.
又例如:∵
,即
,
∴
的整数部分为2,小数部分为(
-2).
请解答:(1)
的整数部分是 ,小数部分是 .
(2)如果
的小数部分为a,
的整数部分为b,求a+b-
的值;
(3)已知: 10+
=x+y,其中x是整数,且0<y<1,求x-y的相反数.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,DF∥AC,E点为DF上的点,B为AC上的点,∠1=∠2.求证:∠C=∠D.请你根据条件进行推理,得出结论,并在括号内注明原因.
证明:∵∠1=∠2(已知)
∠1=∠3,∠2=∠4(_______),
∴∠3=∠4(等量代换),
∴_____∥_____(_______),
∴∠C=∠ABD(_______),
∵DF∥AC(已知)
∴∠D=∠ABD(_______),
∴∠C=∠D(_______).
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为-1,正方形ABCD的面积为16.
![]()
(1)数轴上点B表示的数为___;
(2)将正方形ABCD沿数轴水平移动,移动后的正方形记为A′B′C′D′,移动后的正方形A′B′C′D′与原正方形ABCD重叠部分的面积为S.
①当S=4时,画出图形,并求出数轴上点A′表示的数;
②设正方形ABCD的移动速度为每秒2个单位长度,点E为线段AA′的中点,点F在线段BB′上,且BF=
BB′.经过t秒后,点E,F所表示的数互为相反数,直接写出t的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】对于一元二次方程
下列说法:①当
时,则方程
一定有一根为
;②若
则方程
一定有两个不相等的实数根;③若
是方程
的一个根,则一定有
;④若
,则方程
有两个不相等的实数根。其中正确的是( )
A.①②B.①③C.①②④D.②③④
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE =∠BAC,连接CE.
(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=________度;
(2)设
,
.
①如图2,当点在线段BC上移动,则
,
之间有怎样的数量关系?请说明理由;
②当点在直线BC上移动,则
,
之间有怎样的数量关系?请直接写出你的结论.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,按下列步骤作图:①以点B为圆心,适当长为半径画弧,与AB,BC分别交于点D,E;②分别以D,E为圆心,大于
DE的长为半径画弧,两弧交于点P;③作射线BP交AC于点F;④过点F作FG⊥AB于点G.下列结论正确的是( )
![]()
A. CF=FG B. AF=AG C. AF=CF D. AG=FG
查看答案和解析>>
科目: 来源: 题型:
【题目】一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是( )
![]()
A. 此抛物线的解析式是y=﹣
x2+3.5
B. 篮圈中心的坐标是(4,3.05)
C. 此抛物线的顶点坐标是(3.5,0)
D. 篮球出手时离地面的高度是2m
查看答案和解析>>
科目: 来源: 题型:
【题目】已知矩形ABCD和点P,当点P在图1中的位置时,则有结论:S△PBC=S△PAC+S△PCD
理由:过点P作EF垂直BC,分别交AD、BC于E、F两点.
∵S△PBC+S△PAD=
BCPF+
ADPE=
BC(PF+PE)=
BCEF=
S矩形ABCD.
(1)请补全以上证明过程.
(2)请你参考上述信息,当点P分别在图1、图2中的位置时,S△PBC、S△PAC、SPCD又有怎样的数量关系?请写出你对上述两种情况的猜想,并选择其中一种情况的猜想给予证明.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com