相关习题
 0  356924  356932  356938  356942  356948  356950  356954  356960  356962  356968  356974  356978  356980  356984  356990  356992  356998  357002  357004  357008  357010  357014  357016  357018  357019  357020  357022  357023  357024  357026  357028  357032  357034  357038  357040  357044  357050  357052  357058  357062  357064  357068  357074  357080  357082  357088  357092  357094  357100  357104  357110  357118  366461 

科目: 来源: 题型:

【题目】某厂家生产一种新型电子产品,制造时每件的成本为40元,通过试销发现,销售量万件与销售单价之间符合一次函数关系,其图象如图所示.

yx的函数关系式;

物价部门规定:这种电子产品销售单价不得超过每件80元,那么,当销售单价x定为每件多少元时,厂家每月获得的利润最大?最大利润是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】某中学为了解该校九年级学生对观看“中国诗词大会”节目喜爱程度,对该校九年级学生进行了随机抽样调查,调查时,将喜爱程度分为四级:A非常喜欢B喜欢C一般D不喜欢根据调查结果,绘制成如下两幅不完整的统计图请你结合图中信息解答下列问题:

本次调查共抽取______名学生,在扇形图中,表示A级的扇形的圆心角为______

若该校九年级共有学生300人,请你估计不喜欢观看“中国诗词大会”节目的有多少人?并补全条形图;

已知在A级学生中有3名男生,现要从本次调查中的5A级学生中,选出2名参加全市中学生诗词大会比赛,请用“列表”或“树形图”的方法,求选出的2名学生中至少有1名女生的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与x轴交于A(1,0),B(﹣3,0)两点,现有经过点A的直线l:y=kx+b1与y轴交于点C,与抛物线的另个交点为D.

(1)求抛物线的函数表达式;

(2)若点D在第二象限且满足CD=5AC,求此时直线1的解析式;在此条件下,点E为直线1下方抛物线上的一点,求ACE面积的最大值,并求出此时点E的坐标;

(3)如图,设P在抛物线的对称轴上,且在第二象限,到x轴的距离为4,点Q在抛物线上,若以点A,D,P,Q为顶点的四边形能否成为平行四边形?若能,请直接写出点Q的坐标;若不能,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在ABC中,AB=AC=2,B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作ADE=40°,DE交线段AC于E.

(1)当BDA=115°时,BAD= °;点D从B向C运动时,BDA逐渐变 (填“大”或“小”);

(2)当DC等于多少时,ABD≌△DCE,请说明理由;

(3)在点D的运动过程中,ADE的形状也在改变,判断当BDA等于多少度时,ADE是等腰三角形.

查看答案和解析>>

科目: 来源: 题型:

【题目】课本目标与评定中有这样一道思考题:如图钢架中∠A=20°,焊上等边的钢条P1P2P2P3P3P4P4P5来加固钢架,若P1A=P1P2,问这样的钢条至多需要多少根?

1)请将下列解答过程补充完整:

答案:∵∠A=20°P1A=P1P2,∴∠P1P2A=   .

P1P2=P2P3=P3P4=P4P5,∴∠P2P1P3=P2P3P1=40°

同理可得,∠P3P2P4=P3P4P2=60°,∠P4P3P5=P4P5P3=   

∴∠BP4P5=CP5P4=100°90°

∴对于射线P4B上任意一点P6(点P4除外),P4P5P5P6

∴这样的钢架至多需要   .

2)继续探究:当∠A=15°时,这样的钢条至多需要多少根?

3)当这样的钢条至多需要8根时,探究∠A的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在等腰中,,点EAC且不与点AC重合,在的外部作等腰,使,连接AD,分别以ABAD为邻边作平行四边形ABFD,连接AF

请直接写出线段AFAE的数量关系;

绕点C逆时针旋转,当点E在线段BC上时,如图,连接AE,请判断线段AFAE的数量关系,并证明你的结论;

,在图的基础上将绕点C继续逆时针旋转一周的过程中,当平行四边形ABFD为菱形时,直接写出线段AE的长度.

查看答案和解析>>

科目: 来源: 题型:

【题目】某乡镇风力资源丰富,为了实现低碳环保,该乡镇决定开展风力发电,打算购买10台风力发电机组.现有AB两种型号机组,其中A型机组价格为12万元/台,月均发电量为2.4kwhB型机组价格为10万元/台,月均发电量为2kwh.经预算该乡镇用于购买风力发电机组的资金不高于105万元.

1)请你为该乡镇设计几种购买方案;

2)如果该乡镇用电量不低于20.4kwh/月,为了节省资金,应选择那种购买方案?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,ABC是等腰三角形,ABAC,点DAB上一点,过点DDEBCBC于点E,交CA延长线于点F

1)证明:ADF是等腰三角形;

2)若∠B60°BD4AD2,求EC的长,

查看答案和解析>>

科目: 来源: 题型:

【题目】如果三角形有一边上的中线恰好等于这边的长,那么我们称这个三角形为美丽三角形

(1)如图△ABC中,AB=AC=BC=2,求证:△ABC美丽三角形

(2)RtABC中,∠C=90°AC=2,若△ABC美丽三角形,求BC的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】某经销商销售一种产品,这种产品的成本价为10/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:

1)求yx之间的函数关系式,并写出自变量x的取值范围;

2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?

3)该经销商想要每天获得150元的销售利润,销售价应定为多少?

查看答案和解析>>

同步练习册答案