科目: 来源: 题型:
【题目】将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上,另一个顶
点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图(3),
则三角板的最大边的长为( )
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,AB=AC,DE是过点A的直线,BDDE于点D, CEDE 于点 E.
(1)若BC在DE的同侧(如图所示),且AD=CE,求证:
(2)若B、C在的两侧(如图所示 ),其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,在△ABC中,点D、点E分别在边AB、BC上,DE=AE,且∠B=∠C=∠DEA=β。
(1)求证:△BDE≌△CEA
(2)当∠DEB=β 时,
①求 β 的值;
②若将△AEC绕点E顺时针旋转,使得∠DEA =90°,如图2所示,其余条件不变,连结AB交CE的延长线于F,求证:CF=CA .
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读理解:
(问题情境)
教材中小明用4张全等的直角三角形纸片拼成图1,利用此图,可以验证勾股定理吗?
(探索新知)
从面积的角度思考,不难发现:大正方形的面积=小正方形的面积 + 4个直角三角形的面积,从而得数学等式: ;(用含字母a、b、c的式子表示)化简证得勾股定理:
(初步运用)
(1)如图1,若b=2a ,则小正方形面积:大正方形面积= ;
(2)现将图1中上方的两直角三角形向内折叠,如图2,若a= 4,b= 6此时空白部分的面积为 ;
(迁移运用)
如果用三张含60°的全等三角形纸片,能否拼成一个特殊图形呢?带着这个疑问,小丽拼出图3的等边三角形,你能否仿照勾股定理的验证,发现含60°的三角形三边a、b、c之间的关系,写出此等量关系式及其推导过程.
知识补充:如图4,含60°的直角三角形,对边y :斜边x=定值k
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发以每秒1cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).
(1)若点P在AC上,且满足PA=PB时,求出此时t的值;
(2)若点P恰好在∠BAC的角平分线上(但不与A点重合),求t的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,E为AC上一点,且AE=BC,过点A作AD⊥CA,垂足为A,且AD=AC,AB、DE交于点F.试判断线段AB与DE的数量关系和位置关系,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,AD是高,E、F分别是AB、AC的中点。
(1)AB=12,AC=10,求四边形AEDF的周长;
(2)EF与AD有怎样的位置关系?证明你的结论。
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC中,AB=AC=24,D是BC的中点,AC的垂直平分线EF分别交AC、AD于点E、F,EF = 5 .
(1)求点F到边AB的距离FG的长;
(2)求 F到B点的距离FB的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,经过原点O的抛物线与x轴交于另一点,在第一象限内与直线交于点.
求这条抛物线的表达式;
在第四象限内的拋物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;
如图2,若点M在这条抛物线上,且,
求点M的坐标;
在的条件下,是否存在点P,使得∽?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com