相关习题
 0  357269  357277  357283  357287  357293  357295  357299  357305  357307  357313  357319  357323  357325  357329  357335  357337  357343  357347  357349  357353  357355  357359  357361  357363  357364  357365  357367  357368  357369  357371  357373  357377  357379  357383  357385  357389  357395  357397  357403  357407  357409  357413  357419  357425  357427  357433  357437  357439  357445  357449  357455  357463  366461 

科目: 来源: 题型:

【题目】如图,AB是⊙O的直径,弦CDAB于点G,点FCD上的一点,且满足,连接AF并延长交⊙O于点E,连接ADDE,若CF=2,AF=3,给出下列结论:①△ADF∽△AEDGF=2;tanE=SADE=7.其中正确的是__________(写出所有正确结论的序号).

查看答案和解析>>

科目: 来源: 题型:

【题目】关于x的方程rx2+(r+2)x+r﹣1=0有根只有整数根的一切有理数r的值有(  )个.

A. 1 B. 2 C. 3 D. 不能确定

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=x2+bx+c经过点B,与直线l的另一个交点为C(4,n).

(1)求n的值和抛物线的解析式;

(2)点D在抛物线上,DEy轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0t4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;

(3)将AOB绕平面内某点M旋转90°或180°,得到A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,△ ABC 和△ADE都是等边三角形,点 B ED 的延长线上.

1)求证:△ABD≌△ACE

2)求证:AECE=BE

3)求∠BEC 的度数.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知AB是⊙O的直径,弦CDABH,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AGCDK

1)如图1,求证:KE=GE

2)如图2,连接CABG,若∠FGB=ACH,求证:CAFE

3)如图3,在(2)的条件下,连接CGAB于点N,若sinE=AK=,求CN的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ACB中,∠ACB=90°AC=BC,点C的坐标为(﹣20),点A的坐标为(﹣63),求点B的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知如图平面直角坐标系中,点O是坐标原点,矩形ABCO是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点Dy轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.

(1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式);

(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使DOMABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;

(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知一张三角形纸片如图甲,其中将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为如图乙再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为如图丙原三角形纸片ABC中,的大小为______

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,ABCADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DEBC于点F,连接BE,EF.

(1)CDBE相等?若相等,请证明;若不相等,请说明理由;

(2)若∠BAC=90°,求证:BF2+CD2=FD2

查看答案和解析>>

科目: 来源: 题型:

【题目】箱子里有3个红球和2个黄球,从箱子中一次拿两个球出来.

(1)请你用列举法(树形图或列表)求一次拿出的两个球中时一红一黄的概率;

(2)往箱子中再加入x个白球,从箱子里一次拿出的两个球,多次实验统计如下

取出两个球的次数

20

30

50

100

150

200

400

至少有一个球是白球的次数

13

20

35

71

107

146

288

至少有一个球是白球的频率

0.65

0.67

0.70

0.71

0.713

0.73

0.72

请你估计至少有一个球是白球的概率是多少?

(3)在(2)的条件下求x的值.(=0.7222222…)

查看答案和解析>>

同步练习册答案