【题目】已知如图平面直角坐标系中,点O是坐标原点,矩形ABCO是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.
(1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式);
(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM与△ABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;
(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.
【答案】(1)y=x﹣5;(2)若△DOM与△CBA相似,则点M的坐标为(,0)或(,0);(3)
【解析】
试题(1)只需先求出AC中点P的坐标,然后用待定系数法即可求出直线DP的解析式.
(2)由于△DOM与△ABC相似,对应关系不确定,可分两种情况进行讨论,利用三角形相似求出OM的长,即可求出点M的坐标.
(3)易证S△PED=S△PFD.从而有S四边形DEPF=2S△PED=DE.由∠DEP=90°得DE2=DP2﹣PE2=DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥AC时,DP最短,此时DE也最短,对应的四边形DEPF的面积最小.借助于三角形相似,即可求出DP⊥AC时DP的值,就可求出四边形DEPF面积的最小值.
解:(1)过点P作PH∥OA,交OC于点H,如图1所示.
∵PH∥OA,
∴△CHP∽△COA.
∴==.
∵点P是AC中点,
∴CP=CA.
∴HP=OA,CH=CO.
∵A(3,0)、C(0,4),
∴OA=3,OC=4.
∴HP=,CH=2.
∴OH=2.
∵PH∥OA,∠COA=90°,
∴∠CHP=∠COA=90°.
∴点P的坐标为(,2).
设直线DP的解析式为y=kx+b,
∵D(0,﹣5),P(,2)在直线DP上,
∴
∴
∴直线DP的解析式为y=x﹣5.
(2)①若△DOM∽△ABC,图2(1)所示,
∵△DOM∽△ABC,
∴=.
∵点B坐标为(3,4),点D的坐标为(0.﹣5),
∴BC=3,AB=4,OD=5.
∴=.
∴OM=.
∵点M在x轴的正半轴上,
∴点M的坐标为(,0)
②若△DOM∽△CBA,如图2(2)所示,
∵△DOM∽△CBA,
∴=.
∵BC=3,AB=4,OD=5,
∴=.
∴OM=.
∵点M在x轴的正半轴上,
∴点M的坐标为(,0).
综上所述:若△DOM与△CBA相似,则点M的坐标为(,0)或(,0).
(3)∵OA=3,OC=4,∠AOC=90°,
∴AC=5.
∴PE=PF=AC=.
∵DE、DF都与⊙P相切,
∴DE=DF,∠DEP=∠DFP=90°.
∴S△PED=S△PFD.
∴S四边形DEPF=2S△PED
=2×PEDE
=PEDE
=DE.
∵∠DEP=90°,
∴DE2=DP2﹣PE2.
=DP2﹣.
根据“点到直线之间,垂线段最短”可得:
当DP⊥AC时,DP最短,
此时DE取到最小值,四边形DEPF的面积最小.
∵DP⊥AC,
∴∠DPC=90°.
∴∠AOC=∠DPC.
∵∠OCA=∠PCD,∠AOC=∠DPC,
∴△AOC∽△DPC.
∴=.
∵AO=3,AC=5,DC=4﹣(﹣5)=9,
∴=.
∴DP=.
∴DE2=DP2﹣
=()2﹣
=.
∴DE=,
∴S四边形DEPF=DE
=.
∴四边形DEPF面积的最小值为.
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2﹣4ax+3a.
(Ⅰ)求该二次函数的对称轴;
(Ⅱ)若该二次函数的图象开口向下,当1≤x≤4时,y的最大值是2,且当1≤x≤4时,函数图象的最高点为点P,最低点为点Q,求△OPQ的面积;
(Ⅲ)若对于该抛物线上的两点P(x1,y1),Q(x2,y2),当t≤x1≤t+1,x2≥5时,均满足y1≥y2,请结合图象,直接写出t的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016广西贺州市)如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是( )
A. (2,5) B. (5,2) C. (2,﹣5) D. (5,﹣2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,.点在轴的正半轴上,边AB在轴上(点A在点B的左侧).
(1)求点C的坐标.
(2)点D是BC边上一点,点E是AB边上一点,且点E和点C关于AD所在直线对称,直接写出点D坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两名射击运动员进行射击比赛,两人在相同条件下,各射击10次,射击的成绩如图所示.根据统计图信息,整理分析数据如下:
平均成绩(环) | 中位数(环) | 众数(环) | 方差 | |
甲 | 8 | b | 8 | s2 |
乙 | a | 7 | c | 0.6 |
(1)补充表格中a,b,c的值,并求甲的方差s2;
(2)运用表中的四个统计量,简要分析这两名运动员的射击成绩,若选派其中一名参赛,你认为应选哪名运动员?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,A(5, 0), B(0, 5), C(2, 0),连AB
(1)如图2,D为第一象限内一点,CDBC于点C,ADAB于点A,求点D坐标;
(2)E为轴负半轴上一动点,连BE,在轴下方做EFBE于点E,并且EF=BE,连FC,直接写出当CF最短时点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E是BC上的一点,且AE=AD,又DF⊥AE于点F
(1)求证:CE=EF;
(2)若EF=2,CD=4,求矩形ABCD的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com