精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,.轴的正半轴上,边AB轴上(A在点B的左侧).

(1)求点C的坐标.

(2)DBC边上一点,点E是AB边上一点,且点E和点C关于AD所在直线对称,直接写出点D坐标.

【答案】(1)C(0)(2)D(3).

【解析】

1 根据已知条件可证ABC是直角三角形,再用面积法求出OC长得到点C的坐标;

2)先求出AE,得到OE,在利用三个三角形面积间的关系,得到,再求出DE的长,即可确定点D的坐标

解:(1)中,

是直角三角形

由题意可知

C的坐标为

(2)D的坐标为

RtAOC中,

∵点E和点C关于AD所在直线对称

∴∠AED=ACD=90°AE=AC=6,AED≌△ACD

OE=AE-OA=

AE=6AB=10

BE=4

3DE=9

DE=3

D(3).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我们学习了勾股定理后,都知道勾三、股四、弦五”.

观察:3、4、5;5、12、13;7、24、25;9、40、41;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.

(1)请你根据上述的规律写出下一组勾股数:________

(2)若第一个数用字母n(n为奇数,且n≥3)表示,那么后两个数用含n的代数式分别表示为________________,请用所学知识说明它们是一组勾股数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如下图,在平面直角坐标系中,ABO绕点A顺时针旋转到AB1C1的位置,BO分别落在点B1C1,B1x轴上,再将AB1C1绕点B1顺时针旋转到A1B1C2的位置,C2x轴上,A1B1C2绕点C2顺时针旋转到A2B2C2的位置,A2x轴上,依次进行下去….若点A(,0),B(0,2),B2019的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某班数学兴趣小组利用数学知识测量建筑物DEFC的高度.他们从点A出发沿着坡度为i=1:2.4的斜坡AB步行26米到达点B处,此时测得建筑物顶端C的仰角α=35°,建筑物底端D的俯角β=30°.若AD为水平的地面,则此建筑物的高度CD约为(  )米.(参考数据:1.7,tan35°0.7)

A. 23.1 B. 21.9 C. 27.5 D. 30

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知中, DAB边的中点,EAC边上一点,联结DE,过点DBC边于点F,联结EF

(1)如图1,当时,求EF的长;

(2)如图2,当点EAC边上移动时, 的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出的正切值;

(3)如图3,联结CDEF于点Q,当是等腰三角形时,请直接写出BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:对于任何数a,符号[a]表示不大于a的最大整数.

例如:[5.7]=5,[5]=5,[﹣1.5]=﹣2.

(1)[﹣]=   

(2)如果[a]=3,那么a的取值范围是   

(3)如果[]=﹣3,求满足条件的所有整数x.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图平面直角坐标系中,点O是坐标原点,矩形ABCO是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点Dy轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.

(1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式);

(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使DOMABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;

(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ADBCDAD=BDAC=BE

1)求证:∠BED=C

2)猜想并说明BEAC有什么数量和位置关系。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在△ABC中,∠BAC=106°,EFMN分别是ABAC的垂直平分线,点ENBC上,则∠EAN=_____

查看答案和解析>>

同步练习册答案