科目: 来源: 题型:
【题目】(本题满分10分)一幢房屋的侧面外墙壁的形状如图所示,它由等腰三角形OCD和矩形ABCD组成,∠OCD=25°,外墙壁上用涂料涂成颜色相同的条纹,其中一块的形状是四边形EFGH,测得FG∥EH,GH=2.6m,∠FGB=65°。
(1)求证:GF⊥OC;
(2)求EF的长(结果精确到0.1m)。
(参考数据:sin25°=cos65°≈0.42,cos25°=sin65°≈0.91)
查看答案和解析>>
科目: 来源: 题型:
【题目】为了解学生参加选课走板情况,学校研究小组随机抽取若干人进行调查分析,根据收集整理的数据绘制成不完整的条形统计图和扇形统计图,课程类别代码如下:
A:文学类课程 B:益智类课程 C:艺术类课程
根据以上信息,解答下列问题:
(1)该小组采用的调查方式是 ,被调查的样本容量是 ;
(2)将条形统计图和扇形统计图补充完整;
(3)若全校有1280名学生,选择艺术类课程的学生有多少人?
查看答案和解析>>
科目: 来源: 题型:
【题目】图1、图2分别是7×6的网格,网格中的每个小正方形的边长均为1,点A、B在小正方形的顶点上.
(1)在图1中确定点C(点C在小正方形的顶点上),画出三角形ABC,使tanB=1,△ABC的面积为10;
(2)在图2中确定点D(点D在小正方形的顶点上),画出三角形ABD,使△ABD是以AB为斜边的直角三角形,且AD>BD,直接写出∠DAB的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,
(1)求∠AOC的度数
(2)连接BO,试说明BO平分∠ABC
(3)判断AC、AE、CD的关系,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,矩形ABCD中,AD=10,AB=8,点E为边DC上一动点,连接AE,把△ADE沿AE折叠,使点D落在点D′处,当△DD′C是直角三角形时,DE的长为_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:如图,△ABC是等边三角形,延长AC到E,C为线段AE上的一动点(不与点A、E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,OC. 以下五个结论:①AD=BE;②AP=BO;③PQ//AE;④∠AOB=60°;⑤OC平分∠AOE;结论正确的有_________(把你认为正确的序号都填上)
查看答案和解析>>
科目: 来源: 题型:
【题目】规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.
(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,请写出图中两对“等角三角形”.
(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°。求证:CD为△ABC的等角分割线.
(3)在△ABC中,∠A=42°,CD是△ABC的等角分割线,若△ACD是等腰三角形,请直接写出∠ACB的度数.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:
①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AM=MF.其中正确结论的是( )
A. ①③④ B. ②④⑤ C. ①③④⑤ D. ①③⑤
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com