科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=x2﹣(3m+1)x+2m2+m(m>0),与y轴交于点C,与x轴交于点A(x1,0),B(x2,0),且x1<x2.
(1)求2x1﹣x2+3的值;
(2)当m=2x1﹣x2+3时,将此抛物线沿对称轴向上平移n个单位,使平移后得到的抛物线顶点落在△ABC的内部(不包括△ABC的边),求n的取值范围(直接写出答案即可).
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.
(1)求证:四边形OCED是菱形;
(2)若∠BAC=30°,AC=4,求菱形OCED的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点P在∠MON的角平分线上,过点P作OP的垂线交OM,ON于C、D,PA⊥OM.PB⊥ON,垂足分别为A、B,EP∥BD,则下列结论错误的是( )
A.CP=PDB.PA=PBC.PE=OED.OB=CD
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE与CF交于点D,则下列结论中不正确的是( )
A. B. C. 点D在的平分线上D. 点D是CF的中点
查看答案和解析>>
科目: 来源: 题型:
【题目】某水果超市为了吸引顾客来店购物,设立了一个如图所示的可以自由转动的转盘,开展有奖购物活动.顾客购买商品满200元就能获得一次转动转盘的机会,当转盘停止时,指针落在“一袋苹果”的区域就可以获得“一袋苹果”的奖品;指针落在“一盒樱桃”的区域就可以获得“一盒樱桃”的奖品.下表是该活动的一组统计数据:
转动转盘的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“一袋苹果”区域的次数m | 68 | 108 | 140 | 355 | 560 | 690 |
落在“一袋苹果”区域的频率 | 0.68 | 0.72 | 0.70 | 0.71 | 0.70 | 0.69 |
下列说法不正确的是( )
A. 当n很大时,估计指针落在“一袋苹果”区域的频率大约是0.70
B. 假如你去转动转盘一次,获得“一袋苹果”的概率大约是0.70
C. 如果转动转盘2000次,指针落在“一盒樱桃”区域的次数大约有600次
D. 转动转盘10次,一定有3次获得“一盒樱桃”
查看答案和解析>>
科目: 来源: 题型:
【题目】自2008年实施国家知识产权战略以来,我国具有独立知识产权的发明专利日益增多.下图显示了2010﹣2013年我国发明专利申请量占世界发明专利申请量的比重.根据统计图提供的信息,下列说法不合理的是( )
A. 统计图显示了2010﹣2013年我国发明专利申请量占世界发明专利申请量的比重的情况
B. 我国发明专利申请量占世界发明专利申请量的比重,由2010年的19.7%上升至2013年的32.1%
C. 2011年我国发明专利申请量占世界发明专利申请量的比重是28%
D. 2010﹣2013年我国发明专利申请量占世界发明专利申请量的比重逐年增长
查看答案和解析>>
科目: 来源: 题型:
【题目】下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.
解:设x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
= y2+8y+16 (第二步)
=(y+4)2 (第三步)
=(x2-4x+4)2 (第四步)
回答下列问题:
(1)该同学第二步到第三步运用了因式分解的_______.
A.提取公因式 B.平方差公式 C.两数和的完全平方公式 D.两数差的完全平方公式
(2)该同学因式分解的结果是否彻底?________.(填“彻底”或“不彻底”)
若不彻底,请直接写出因式分解的最后结果_________.
(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AC=DF,BF=EC.求证:
(1)△ABC≌△DEF;
(2)FG=CG.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).
(1)在图中作出△ABC 关于 y 轴对称的△A1B1C1并写出坐标;
(2)求出△A1B1C1的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com