科目: 来源: 题型:
【题目】△ABC在平面直角坐标系中的位置如图所示.
(1)作出△ABC关于y轴对称的△ABlCl;
(2)点P在x轴上,且点P到点B与点C的距离之和最小,直接写出点P的坐标为______.
查看答案和解析>>
科目: 来源: 题型:
【题目】某汽车4S店销售某种型号的汽车,每辆进货价为15万元,该店经过一段时间的市场调研发现:当销售价为25万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出1辆.该4S店要想平均每周的销售利润为90万元,并且使成本尽可能的低,则每辆汽车的定价应为多少万元?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABE中,∠BAE=105°,AE的垂直平分线MN交BE于点C,且AB=CE,则∠B的度数是( )
A. 45°B. 60°C. 50°D. 55°
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,一次函数y=﹣2x+4与x轴,y轴分别交于A,B,以线段AB为直角边在第一象限内作Rr△ABC,使AB=AC.
(1)点A的坐标是 ,点B的坐标是 ;
(2)求直线AC的函数关系式;
(3)若P(m,3)在第二象限内,求当△PAB与△ABC面积相等时m的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+4经过点A(-1,0),B(4,0),与y轴交于点C,直线y=x+2交y轴于点D,交抛物线于E,F两点,点P为线段EF上一个动点(与E,F不重合),PQ∥y轴与抛物线交于点Q.
(1)求抛物线的解析式;
(2)当P在什么位置时,四边形PDCQ为平行四边形?求出此时点P的坐标;
(3)是否存在点P使△POB为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,若点P从点A沿AB边向B点以1 cm/s的速度移动,点Q从B点沿BC边向点C以2 cm/s的速度移动,两点同时出发.
(1)问几秒后,△PBQ的面积为8cm?
(2)出发几秒后,线段PQ的长为4cm ?
(3)△PBQ的面积能否为10 cm2?若能,求出时间;若不能,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】二次函数y=ax2+bx+c的图象如图所示,根据图象解答下列问题:
(1)写出方程ax2+bx+c=0的两个根;
(2)当x为何值时,y>0?当x为何值时,y<0?
(3)写出y随x的增大而减小的自变量x的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在下面的网格图中按要求画出图形,并回答问题:
(1)先画出△ABC向下平移5格后的△A1B1C1,再画出△ABC以点O为旋转中心,沿逆时针方向旋转90°后得到的△A2B2C2;
(2)如图,以点O为原点建立平面直角坐标系,试写出点A2,B1的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com