科目: 来源: 题型:
【题目】如图,△ABC中,∠ACB=90°,AC≤BC,将△ABC沿EF折叠,使点A落在直角边BC上的D点处,设EF与AB、AC边分别交于点E、点F,如果折叠后△CDF与△BDE均为等腰三角形,那么∠B=_____.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读理解:我们知道,比较两数(式)大小有很多方法,“作差法”是常用的方法之一,其原理是不等式(或等式)的性质:若
,则
;若
,则
;若
,则
.
例:已知
,
,其中
,求证:
.
证明:![]()
.
∵
,∴
,∴
.
(1)操作感知:比较大小:
①若
,则
______
;
②
______
.
(2)类比探究:已知
,
,试运用上述方法比较
、
的大小,并说明理由.
(3)应用拓展:已知
,
为平面直角坐标系中的两点,小明认为,无论
取何值,点
始终在点
的上方,小明的猜想对吗?为什么?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知
是线段
上的任意一点(端点除外),分别以
,
为斜边并且在
的同一侧作等腰直角
和
,连接
交
于点
,连接
交
于点
,给出以下三个结论:①
;②
;③
,其中正确结论的个数是( )
![]()
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目: 来源: 题型:
【题目】把一张边长为40 cm的正方形硬纸板,进行适当的裁剪,折成一个长方体盒子(纸板的厚度忽略不计).
(1)如图,若在正方形硬纸板的四角各剪掉一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.
![]()
①要使折成的长方体盒子的底面积为484 cm2,那么剪掉的正方形的边长为多少?
②折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.
(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方体盒子.若折成的一个长方体盒子的表面积为550 cm2,求此时长方体盒子的长、宽、高(只需求出符合要求的一种情况).
查看答案和解析>>
科目: 来源: 题型:
【题目】甲、乙两人共同计算一道整式:(x+a)(2x+b),由于甲抄错了a的符号,得到的结果是2x2-7x+3,乙漏抄了第二个多项式中x的系数,得到的结果是x2+2x-3.
(1)求a,b的值;(2)请计算这道题的正确结果
查看答案和解析>>
科目: 来源: 题型:
【题目】某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.
(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?
(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的
,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.
①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?
②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在一条长
米,宽
米的矩形草地上修三条小路,小路都等宽,除小路外,草地面积为
米2的
个矩形小块,则小路的宽度应为( )
![]()
A.
米或
米 B.
米 C.
米 D.
米
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com