相关习题
 0  357951  357959  357965  357969  357975  357977  357981  357987  357989  357995  358001  358005  358007  358011  358017  358019  358025  358029  358031  358035  358037  358041  358043  358045  358046  358047  358049  358050  358051  358053  358055  358059  358061  358065  358067  358071  358077  358079  358085  358089  358091  358095  358101  358107  358109  358115  358119  358121  358127  358131  358137  358145  366461 

科目: 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过EEFDCBC的延长线于F.

(1)证明:四边形CDEF是平行四边形;

(2)若四边形CDEF的周长是25cm,AC的长为5cm,求线段AB的长度.

查看答案和解析>>

科目: 来源: 题型:

【题目】海南建省30年来,各项事业取得令人瞩目的成就,以2016年为例,全省社会固定资产总投资约3730亿元,其中包括中央项目、省属项目、地(市)属项目、县(市)属项目和其他项目.图1、图2分别是这五个项目的投资额不完整的条形统计图和扇形统计图,请完成下列问题:

(1)在图1中,先计算地(市)属项目投资额为   亿元,然后将条形统计图补充完整;

(2)在图2中,县(市)属项目部分所占百分比为m%、对应的圆心角为β,则m=   ,β=   度(m、β均取整数).

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6⊙O相交(点O为坐标原点),则m的取值范围为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做等高底三角形,这条边叫做这个三角形的等底”.

(1)概念理解:

如图1,在ABC中,AC=6,BC=3,ACB=30°,试判断ABC是否是等高底三角形,请说明理由.

(2)问题探究:

如图2,ABC等高底三角形,BC等底,作ABC关于BC所在直线的对称图形得到A'BC,连结AA′交直线BC于点D.若点BAA′C的重心,求的值.

(3)应用拓展:

如图3,已知l1l2,l1l2之间的距离为2.“等高底ABC等底”BC在直线l1上,点A在直线l2上,有一边的长是BC倍.将ABC绕点C按顺时针方向旋转45°得到A'B'C,A′C所在直线交l2于点D.求CD的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点BFCE在一条直线上,AB=DEABDEA=∠D

1)求证:ABCDEF;(2ACDF存在怎样的关系?(直接写出答案)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知反比例函数y=的图象的一支位于第一象限,点A(x1,y1),B(x2,y2)都在该函数的图象上.

(1)m的取值范围是   ,函数图象的另一支位于第一象限,若x1>x2,y1>y2,则点B在第   象限;

(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点C与点A关于x轴对称,若OAC的面积为6,求m的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,平面直角坐标系中,A(21)B(34)C(13),过点(l0)x轴的垂线

(1)作出ABC关于直线的轴对称图形

(2)直接写出A1(______)B1(______)C1(______)

(3)ABC内有一点P(mn),则点P关于直线的对称点P1的坐标为(______)(结果用含mn的式子表示)

查看答案和解析>>

科目: 来源: 题型:

【题目】请在下面括号里补充完整证明过程:

已知:如图,△ABC中,∠ACB90°AF平分∠CAB,交CD于点E,交CB于点F,且∠CEF=∠CFE.求证:CDAB.

证明:∵AF平分∠CAB (已知)

1=∠2

∵∠CEF=∠CFE , 又∠3=CEF (对顶角相等)

∴∠CFE=3(等量代换)

∵在△ACF中,∠ACF90°(已知)

∴( +CFE90°

∵∠1=∠2, CFE=3(已证) ∴( + )=90°(等量代换)

在△AED, ADE90°( 三角形内角和定理)

CDAB .

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,有一块含30°角的直角三角板OAB的直角边BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把这两块三角板放置在平面直角坐标系中,且OB=3.

(1)若某反比例函数的图象的一个分支恰好经过点A,求这个反比例函数的解析式;

(2)若把含30°角的直角三角板绕点O按顺时针方向旋转后,斜边OA恰好落在x轴上,点A落在点A′处,试求图中阴影部分的面积.(结果保留π)

【答案】(1)反比例函数的解析式为y=;(2)S阴影=6π-.

【解析】分析:(1)根据tan30°=,求出AB,进而求出OA,得出A的坐标,设过A的双曲线的解析式是y=,把A的坐标代入求出即可;(2)求出∠AOA′,根据扇形的面积公式求出扇形AOA′的面积,求出OD、DC长,求出△ODC的面积,相减即可求出答案.

本题解析:

(1)在Rt△OBA中,∠AOB=30°,OB=3

∴AB=OB·tan 30°=3.

∴点A的坐标为(3,3).

设反比例函数的解析式为y= (k≠0),

∴3,∴k=9,则这个反比例函数的解析式为y=.

(2)在Rt△OBA中,∠AOB=30°,AB=3,

sin ∠AOB=,即sin 30°=

∴OA=6.

由题意得:∠AOC=60°,S扇形AOA′=6π.

Rt△OCD中,∠DOC=45°,OC=OB=3

∴OD=OC·cos 45°=3×.

∴SODCOD2.

∴S阴影=S扇形AOA′-SODC=6π.

点睛:本题考查了勾股定理、待定系数法求函数解析式、特殊角的三角函数值、扇形的面积及等腰三角形的性质,本题属于中档题,难度不大,将不规则的图形的面积表示成多个规则图形的面积之和是解答本题的关键.

型】解答
束】
26

【题目】矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.

(1)如图①,已知折痕与边BC交于点O,连接AP,OP,OA.

① 求证:△OCP∽△PDA;

② 若△OCP与△PDA的面积比为1:4,求边AB的长.

(2)如图②,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P,A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M,N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在RtABC中,AB=6, ∠BAC=30, ∠BAC的平分线交BC于点D,E,F分别是线段ADAB上的动点,则BE+EF的最小值是___

查看答案和解析>>

同步练习册答案