科目: 来源: 题型:
【题目】一个多边形的所有内角与它的一个外角之和是2018°,求这个外角的度数和它的边数.
【答案】38° ; 边数13
【解析】试题分析:根据多边形的内角和公式(n-2)180°可知,多边形的内角和是180°的倍数,然后列式求解即可.
试题解析:设多边形的边数是n,加的外角为α,则
(n-2)180°+α=2018°,
α=2378°-180°n,又0<α<180°,
即0<2378°-180°n<180°,
解得: <n<,
又n为正整数,
可得n=13,
此时α=38°满足条件,
答:这个外角的度数是38°,它的13边形.
【点睛】本题考查了多边形的内角和公式,利用好多边形的内角和是180°的倍数是解题的关键.
【题型】解答题
【结束】
22
【题目】已知, 求 (1) ; (2) .
查看答案和解析>>
科目: 来源: 题型:
【题目】已知等腰三角形△ABC,BC边上的高恰好等于BC边长的一半,则∠BAC的度数是( )
A.75°B.90°或75°C.90°或 75°或15°D.75°或15°或60°
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,阳光下,小亮的身高如图中线段AB所示,他在地面上的影子如图中线段BC所示,线段DE表示旗杆的高,线段FG表示一堵高墙.
(1)请你在图中画出旗杆在同一时刻阳光照射下形成的影子,并用线段表示;
(2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗杆的高DE=15m,旗杆与高墙的距离EG=16m,请求出旗杆的影子落在墙上的长度.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,正方体盒子的棱长为2,BC的中点为M.
(1)一只蚂蚁从点M沿正方体的棱爬到点D1,蚂蚁爬行的最短路程是多少?
(2)若蚂蚁从点M沿正方体的表面爬行到点D1,请你结合正方体的展开图画出蚂蚁爬行的最短路线.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知∠ABC=∠DCB,添加一个条件使△ABC≌△DCB,下列添加的条件不能使△ABC≌△DCB的是( )
A. ∠A=∠D B. AB=DC C. AC=DB D. OB=OC
查看答案和解析>>
科目: 来源: 题型:
【题目】等腰Rt△ABC中,∠BAC=90°,AB=AC,点A、点B分别是y轴、x轴上两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E;
(1)如图(1),已知C点的横坐标为-1,直接写出点A的坐标;
(2)如图(2), 当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE;
(3)如图(3), 若点A在x轴上,且A(-4,0),点B在y轴的正半轴上运动时,分别以OB、AB为直角边在第一、二象限作等腰直角△BOD和等腰直角△ABC,连结CD交y轴于点P,问当点B在y轴的正半轴上运动时,BP的长度是否变化?若变化请说明理由,若不变化,请求出BP的长度.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图①,已知平面内一点与一直线,如果过点作直线,垂足为,那么垂足叫做点在直线上的射影;如果线段的两个端点和在直线上的射影分别为点和,那么线段叫做线段在直线上的射影.
如图①,已知平面内一点与一直线,如果过点作直线,垂足为,那么垂足叫做点在直线上的射影;如果线段的两个端点和在直线上的射影分别为点和,那么线段叫做线段在直线上的射影.
如图②,、为线段外两点,,,垂足分别为、.
则点在上的射影是________点,点在上的射影是________点,
线段在上的射影是________,线段在上的射影是________;
根据射影的概念,说明:直角三角形斜边上的高是两条直角边在斜边上射影的比例中项.(要求:画出图形,写出说理过程.)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四边形的边上任取一点(点不与点、点重合),分别连接,,可以把四边形分成三个三角形,如果其中有两个三角形相似,我们就把叫做四边形的边上的相似点;如果这三个三角形都相似,我们就把叫做四边形的边上的强相似点.
如图,画出矩形中的边上的一个强相似点.(要求:画图工具不限,不写画法,保留画图痕迹或有必要说明).
对于任意的一个矩形,是否一定存在强相似点?如果一定存在,请说明理由;如果不一定存在,请举出反例.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com