科目: 来源: 题型:
【题目】太极揉推器是一种常见的健身器材.基本结构包括支架和转盘,数学兴趣小组的同学对某太极揉推器的部分数据进行了测量:如图,立柱AB的长为125cm,支架CD、CE的长分别为60cm、40cm,支点C到立柱顶点B的距离为25cm.支架CD,CE与立柱AB的夹角∠BCD=∠BCE=45°,转盘的直径FG=MN=60cm,D,E分别是FG,MN的中点,且CD⊥FG,CE⊥MN,则两个转盘的最低点F,N距离地面的高度差为_____cm.(结果保留根号)
查看答案和解析>>
科目: 来源: 题型:
【题目】一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示,下列叙述正确的是( )
A. 甲乙两地相距1200千米
B. 快车的速度是80千米∕小时
C. 慢车的速度是60千米∕小时
D. 快车到达甲地时,慢车距离乙地100千米
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)如图①,在四边形中,,点是的中点,若是的平分线,试判断,,之间的等量关系.
解决此问题可以用如下方法:延长交的延长线于点,易证得到,从而把,,转化在一个三角形中即可判断.
,,之间的等量关系________;
(2)问题探究:如图②,在四边形中,,与的延长线交于点,点是的中点,若是的平分线,试探究,,之间的等量关系,并证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,A,C,E,G四点在同一直线上,分别以线段AC,CE,EG为边在AG同侧作等边三角形△ABC,△CDE,△EFG,连接AF,分别交BC,DC,DE于点H,I,J,若AC=1,CE=2,EG=3,则△DIJ的面积是( )
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】仔细阅读下面的例题,并解答问题:
例题:已知二次三项式有一个因式是,求另一个因式以及的值.
解法一:设另一个因式为,得
则,
∴解得,.
∴另一个因式为,的值为-21.
解法二:设另一个因式为,得
∴当时,
即,解得
∴
∴另一个因式为,的值为-21.
问题:仿照以上一种方法解答下面问题.
(1)若多项式分解因式的结果中有因式,则实数______.
(2)已知二次三项式有一个因式是,求另一个因式及的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】魏晋时期的数学家刘徽首创割圆术.为计算圆周率建立了严密的理论和完善的算法.作圆内接正多边形,当正多边形的边数不断增加时,其周长就无限接近圆的周长,进而可用来求得较为精确的圆周率.祖冲之在刘徽的基础上继续努力,当正多边形的边数增加24576时,得到了精确到小数点后七位的圆周率,这一成就在当时是领先其他国家一千多年,如图,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是( )
A. 0.5 B. 1 C. 3 D. π
查看答案和解析>>
科目: 来源: 题型:
【题目】从安陆到武汉市,可乘坐普通列车或高铁,已知高铁的行驶路程是100千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.
(1)求普通列车的行驶路程;
(2)设计高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短45分钟,求高铁的平均速度.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知和是两个边长都为的等边三角形,且点,,,在同一直线上,连接,.
求证:四边形是平行四边形;
若沿着的方向匀速运动,不动,当运动到点与点重合时,四边形是什么特殊的四边形?说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE//OC交y轴于点E,已知AO=m,BO=n,且m、n满足n2-12+36+|n-2m|=0.
(1)求A、B两点的坐标?
(2)若点D为AB中点,求OE的长?
(3)如图2,若点P(x,-2x+6)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com