科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,函数 y kx 与 y 的图象交于 A、B 两点,过 A 作 y 轴的垂线,交函数的图象于点 C,连接 BC,则△ABC 的面积为( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二次函数y=ax2+bx(a≠0)中自变量x和函数值y的部分对应值如下表:
x | … | ﹣2.5 | ﹣2 | ﹣1 | 0 | 0.5 | … |
y | … | ﹣5 | 0 | 4 | 0 | ﹣5 | … |
(1)求二次函数解析式,并写出顶点坐标;
(2)在直角坐标系中画出该抛物线的图象;
(3)若该抛物线上两点A(x1,y1)、B(x2,y2)的横坐标满足x1<x2<﹣1,试比较y1与y2的大小,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在直角坐标平面内,△ABC的三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).
(1)填空:∠ ABC= ,S△ABC= ;
(2)画出△ABC关于x轴的对称图形△A1B1C1,再画出△A1B1C1关于y轴的对称图形△A2B2C2,在x轴上作一点p,使p到A,C两点间的距离和最短;
(3)若M是△ABC内一点,其坐标是(a,b),则△A2B2C2中,点M的对应点的坐标为 .
查看答案和解析>>
科目: 来源: 题型:
【题目】王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,则两堵木墙之间的距离为______cm.
查看答案和解析>>
科目: 来源: 题型:
【题目】从图中的二次函数y=ax2+bx+c图象中,观察得出了下面的五条信息:
①b>0 ②c=0;③函数的最小值为﹣3;④a﹣b+c>0;⑤当x1<x2<2时,y1>y2.
(1)你认为其中正确的有哪几个?(写出编号)
(2)根据正确的条件请求出函数解析式.
查看答案和解析>>
科目: 来源: 题型:
【题目】我们知道,同底数幂的乘法法则为am·an=am+n(其中a≠0 ,m、n为正整数),类似地我们规定关于任意正整数m、n的一种新运算:h(m+n)=h(m)·h(n);比如h(2)=3,则h(4)=h(2+2)=3×3=9,若h(2)=k(k≠0 ),那么h(2n)·h(2020)的结果是( )
A.2k+2020B.2k+1010C.kn+1010D.1022k
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,直线分别交轴、轴于点和点,且,满足.
(1)______,______.
(2)点在直线的右侧,且:
①若点在轴上,则点的坐标为______;
②若为直角三角形,求点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】在中,,,将绕点旋转角得,交于点,分别交、于、两点.
在旋转过程中,线段与有怎样的数量关系?证明你的结论;
当时,试判断四边形的形状,并说明理由;
在的情况下,求线段的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.
(1)该玩具销售单价定为多少元时,商场能获得12000元的销售利润?
(2)该玩具销售单价定为多少元时,商场获得的销售利润最大?最大利润是多少?
(3)若玩具厂规定该品牌玩具销售单价不低于46元,且商场要完成不少于500件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在中,,,,在边上,在线段上,,是等边三角形,边交边于点,边交边于点.
求证:;
当为何值时,以为圆心,以为半径的圆与相切?
设,五边形的面积为,求与之间的函数解析式(要求写出自变量的取值范围);当为何值时,有最大值?并求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com