科目: 来源: 题型:
【题目】如图,一条抛物线与轴相交于、两点,其顶点在折线上移动,若点、、的坐标分别为、、,点的横坐标的最小值为,则点的横坐标的最大值为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目: 来源: 题型:
【题目】在矩形AOBC中,OB=6,OA=4,分别以OB,OA所在直线为x轴和y轴建立如图所示的平面直角坐标系,F是BC上的一个动点(不与B、C重合),过F点的反比例函数(k>0)的图象与AC边交于点E,连接OE,OF,EF.
(1)若tan∠BOF=,求F点的坐标;
(2)当点F在BC上移动时,△OEF与△ECF的面积差记为S,求当k为何值时,S有最大值,最大值是多少?
(3)是否存在这样的点F,使得△OEF为直角三角形?若存在,求出此时点F坐标;若不存在,请说明理由。
查看答案和解析>>
科目: 来源: 题型:
【题目】“三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB置于直角坐标系中,边OB在x轴上、边OA与函数的图象交于点P,以P为圆心、以2OP为半径作弧交图象于点R.分别过点P和R作x轴和y轴的平行线,两直线相交于点M,连接OM得到∠MOB,则∠MOB=∠AOB.要明白帕普斯的方法,请研究以下问题:
(1)设P(,)、R(,),求直线OM对应的函数表达式(用含,的代数式表示);
(2)分别过点P和R作y轴和x轴的平行线,两直线相交于点Q.请说明Q点在直线OM上,并据此证明∠MOB=∠AOB;
(3)应用上述方法得到的结论,你如何三等分一个钝角(用文字简要说明)
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC中,AB=AC,以BC为边作等边△BDC,连接AD.
(1)如图1,直接写出∠ADB的度数 ;
(2)如图2,作∠ABM=60°在BM上截取BE,使BE=BA,连接CE,判断CE与AD的数量关系,请补全图形,并加以证明;
(3)在(2)的条件下,连接DE,AE.若∠DEC=60°,DE=2,求AE的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】先阅读下面的内容,再解决问题.
例题:若, 求m和n的值
解:∵
∴
∴
∴,
∴,
问题:(1)若,求的值.
(2)已知a,b,c是△ABC的三边长,满足,且c是△ABC中最长的边,求c的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】乘法公式的探究与应用:
(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是 (写成两数平方差的形式)
(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是 ,宽是 ,面积是 (写成多项式乘法的形式).
(3)比较甲乙两图阴影部分的面积,可以得到公式 (用式子表达)
(4)运用你所得到的公式计算:10.3×9.7.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,正方形ABCD中,以AD为底边作等腰△ADE,将△ADE沿DE折叠,点A落到点F处,连接EF刚好经过点C,再连接AF,分别交DE于点G,交CD于点H,下列结论:①△ABM≌△DCN;②∠DAF=30°;③△AEF是等腰直角三角形;④EC=CF;⑤,其中正确的有__________.
查看答案和解析>>
科目: 来源: 题型:
【题目】某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,由点P(14,1),A(,0),B(0,)(),确定的△PAB的面积为18,则的值为_________,如果,则的值为_____________________
查看答案和解析>>
科目: 来源: 题型:
【题目】边长为1的小正方形网格中,点A,B,C均落在格点上.
(1)猜想△ABC的形状 ,并证明;
(2)直接写出△ABC的面积= ;
(3)画出△ABC关于直线l的轴对称图形△A1B1C1.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com