精英家教网 > 初中数学 > 题目详情

【题目】先阅读下面的内容,再解决问题.

例题:若, 求m和n的值

解:∵

问题:(1)若,求的值.

(2)已知a,b,c是△ABC的三边长,满足,且c是△ABC中最长的边,求c的取值范围.

【答案】(1)4;(2)

【解析】试题分析:(1)先利用完全平方公式整理成平方和的形式,然后根据非负数的性质列式求出xy的值,然后代入代数式计算即可;
(2)先利用完全平方公式整理成平方和的形式,再利用非负数的性质求出ab的值,然后利用三角形的三边关系即可求解.

解: (1) ,

,

,

,

,

.

(2) ,

,

,

,

,

.

a,b,c是△ABC的三边,

∴ c的取值为: .

c是△ABC中最长的边,且,

c的取值为: .

点睛:本题考查了完全平方公式以及非负数的性质,三角形三边关系,(2)一定要特别注意c为最长边这一条件.利用完全平方公式配方成平方和的形式是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一副三角板如图1摆放,∠C=∠DFE=90,∠B=30,∠E=45,FBC,ADF,AF平分∠CAB,现将三角板DFE绕点F顺时针旋转(当点D落在射线FB上时停止旋转).

(1)当∠AFD=_ __,DF∥AC;当∠AFD=__ _时,DF⊥AB;

(2)在旋转过程中,DFAB的交点记为P,如图2,若AFP有两个内角相等,求∠APD的度数;

(3)当边DE与边AB、BC分别交于点M、N时,如图3,若∠AFM=2∠BMN,比较∠FMN与∠FNM的大小,并说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图所示,ABC中,∠ABC=45°,高AE与高BD交于点MBE=4EM=3.

1)求证:BM=AC

2)求ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(01)B(41)Cx轴正半轴上一点,且AC平分∠OAB.

(1)求证:∠OAC∠OCA

(2)如图,若分别作∠AOC的三等分线及∠OCA的外角的三等分线交于点P,即满足∠POC=∠AOC,∠PCE=∠ACE,求∠P的大小;

(3)如图③,在(2)中,若射线OP、CP满足∠POC=∠AOC,∠PCE=∠ACE,猜想∠OPC的大小,并证明你的结论(用含n的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB、ED分别垂直于BD,点B、D是垂足,且∠ACB=∠CED.求证:△ACE是直角三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(10)已知△ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边△ADE.

(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;

(2)如图②,点D在线段BC的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,若将ABC绕点C顺时针旋转180°,得到FEC

(1)猜想AE与BF有何关系,说明理由.

(2)若ABC的面积为3cm2,求四边形ABFE的面积.

(3)当ACB为多少度时,四边形ABFE为矩形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在正方形ABCD中,AB=6,P为边CD上一点,过P点作PE⊥BD于点E,连接BP.

(1) 如图1,求 的值;

(2)O为BP的中点,连接CO并延长交BD于点F.

① 如图2,连接OE,求证:OE⊥OC;

② 如图3,若,求DP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y1=kx+b的图象与反比例函数的图象交于A21),B1n)两点.

1)试确定上述反比例函数和一次函数的表达式.

2)求△AOB的面积.

3)比较y1y2的大小.

查看答案和解析>>

同步练习册答案