科目: 来源: 题型:
【题目】(问题情境)如图,中,,,我们可以利用与相似证明,这个结论我们称之为射影定理,试证明这个定理;
(结论运用)如图,正方形的边长为,点是对角线、的交点,点在上,过点作,垂足为,连接,
(1)试利用射影定理证明;
(2)若,求的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图(1)是一个长为2m,宽为2n的长方形,沿图中虚线剪成四个均匀的小长方形,然后按图(2)形状拼成一个正方形.
(1)你认为图(2)中的阴影部分的正方形的边长等于多少?
(2)观察图(2),你能写出下列三个代数式之间的等量关系吗?代数式:,,;
(3)已知:,,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图:在△ABC中,AB=AC=9,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长为___________;
查看答案和解析>>
科目: 来源: 题型:
【题目】从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.
如图①,在中,为角平分线,,,求证:是的完美分割线;
如图②,在中,,,是的完美分割线,且是以为底边的等腰三角形,求完美分割线的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直线AB与x轴,y轴的交点为A,B两点,点A,B的纵坐标、横坐标如图所示.
(1)求直线AB的表达式及△AOB的面积S△AOB.
(2)在x轴上是否存在一点,使S△PAB=3?若存在,求出P点的坐标,若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知在△ABC中,CE是外角∠ACD的平分线,BE是∠ABC的平分线.
(1)求证:∠A=2∠E,以下是小明的证明过程,请在括号里填写理由.
证明:∵∠ACD是△ABC的一个外角,∠2是△BCE的一个外角,(已知)
∴∠ACD=∠ABC+∠A,∠2=∠1+∠E(_________)
∴∠A=∠ACD﹣∠ABC,∠E=∠2﹣∠1(等式的性质)
∵CE是外角∠ACD的平分线,BE是∠ABC的平分线(已知)
∴∠ACD=2∠2,∠ABC=2∠1(_______)
∴∠A=2∠2﹣2∠1(_________)
=2(∠2﹣∠1)(_________)
=2∠E(等量代换)
(2)如果∠A=∠ABC,求证:CE∥AB.
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售如下:
每人销售件数 | 1800 | 510 | 250 | 210 | 150 | 120 |
人数 | 1 | 1 | 3 | 5 | 3 | 2 |
(1)求这15位营销人员该月销售量的平均数、中位数和众数.
(2)假设销售部负责人把每位营销员的月销售额定为320件,你认为是否合理?为什么?如不合理,请你制定一个合理的销售定额,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图:在平面直角坐标系中A(3,2),B(4,3),C(1,1).
(1)在图中作出△ABC关于y轴对称图形△A1B1C1;
(2)写出A1、B1、C1的坐标分别是A1(___,___),B1(___,___),C1(___,___);
(3)△ABC的面积是___.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1-∠2的度数是( )
A. 32° B. 64° C. 65° D. 70°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com