科目: 来源: 题型:
【题目】一场篮球赛中,球员甲跳起投篮,已知球在处出手时离地面,与篮筐中心的水平距离为,当球运行的水平距离是时,达到最大高度(处),篮筐距地面,篮球运行的路线为抛物线(如图所示).
建立适当的平面直角坐标系,并求出抛物线的解析式;
判断此球能否投中?
查看答案和解析>>
科目: 来源: 题型:
【题目】某商家计划从厂家采购空调和冰箱两种产品共台,空调和冰箱的采购单价与销售单价如表所示:
采购单价 | 销售单价 | |
空调 | ||
冰箱 |
若采购空调台,且所采购的空调和冰箱全部售完,求商家的利润;
厂家有规定,采购空调的数量不少于台,且空调采购单价不低于元,问商家采购空调多少台时总利润最大?并求最大利润.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线,
求抛物线与轴的交点坐标;
求抛物线与轴的两个交点及两个交点间的距离.
求抛物线与轴的交点及与轴交点所围成的三角形面积.
把抛物线改为顶点式,说明顶点和对称轴.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小都相同.正常水位时,大孔水面宽度米,顶点距水面米(即米),小孔顶点距水面米(即米).当水位上涨刚好淹没小孔时,借助图中的直角坐标系,则此时大孔的水面宽度长为( )
A. 米 B. C. 米 D. 米
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线在坐标系中的位置如图所示,它与轴、轴的交点分别为、,点是其对称轴上的动点,根据图中提供的信息,给出以下结论:①;②是的一个根;③周长的最小值是.其中正确的是( )
A. 仅有①② B. 仅有②③ C. 仅有①③ D. ①②③
查看答案和解析>>
科目: 来源: 题型:
【题目】如图为坐标平面上二次函数的图形,且此图形通、两点.下列关于此二次函数的叙述,何者正确( )
A. 的最大值小于
B. 当时,的值大于
C. 当时,的值大于
D. 当时,的值小于
查看答案和解析>>
科目: 来源: 题型:
【题目】已知是的函数,自变量的取值范围为,下表是与的几组对应值
0 | 1 | 2 | 3 | 3.5 | 4 | 4.5 | … | |
1 | 2 | 3 | 4 | 3 | 2 | 1 | … |
小明根据学习函数的经验,利用上述表格所反映出的与之间的变化规律,对该函数的图象与性质进行了探究.下面是小明的探究过程,请补充完整:
(1)如图,在平面直角坐标系中,指出了以上表中各对对应值为坐标的点. 根据描出的点,画出该函数的图象.
(2)根据画出的函数图象填空.
①该函数图象与轴的交点坐标为_____.
②直接写出该函数的一条性质.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线交轴与点和,交轴于点,抛物线的顶点为,下列四个命题:
①当时,;
②若,则;
③抛物线上有两点和,若,且,则;
④点关于抛物线对称轴的对称点为,点,分别在轴和轴上,当时,四边形周长的最小值为.
其中真命题的序号是( )
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点(点A在点B的左侧),直线l与抛物线交于A,C两点,其中点C的横坐标为2.
(1)求A,B两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,求△ACE面积的最大值;
(3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M为直线PE上一动点,则在x轴上是否存在一点N,使四边形DMNQ的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由.
(4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E.
(1)求证:直线CD是⊙O的切线;
(2)若DE=2BC,AD=5,求OC的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com