相关习题
 0  358792  358800  358806  358810  358816  358818  358822  358828  358830  358836  358842  358846  358848  358852  358858  358860  358866  358870  358872  358876  358878  358882  358884  358886  358887  358888  358890  358891  358892  358894  358896  358900  358902  358906  358908  358912  358918  358920  358926  358930  358932  358936  358942  358948  358950  358956  358960  358962  358968  358972  358978  358986  366461 

科目: 来源: 题型:

【题目】阅读材料:把形如的二次三项式(或其一部分)配成完全平方式的方法叫配方法.配方法的基本形式是完全平方公式的逆写,即.请根据阅读材料解决下列问题:

1)填空:分解因式_____

2)若,求的值;

3)若分别是的三边,且,试判断的形状,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校开展“我最喜爱的一项体育活动”调查活动,要求每名学生必选且只能选一项现随机抽查了名学生,并将其结果绘制成如下不完整的条形统计图和扇形统计图.

请结合以上信息解答下列问题:

1______

2)请补全上面的条形统计图;

3)在图2中,“乒乓球”所对应扇形的圆心角的度数为______

4)已知该校共有3200名学生,请你估计该校最喜爱跑步活动的学生人数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知点在同一条直线上,,连结

1)请直接写出图中所有的全等三角形(不添加其它的线)

2)从(1)中的全等三角形中任选一组进行证明.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知点DABC的边AB上,且ADCD

1)用直尺和圆规作∠BDC的平分线DE,交BC于点E(不写作法,保留作图痕迹);

2)在(1)的条件下,判断DEAC的位置关系,并写出证明过程.

查看答案和解析>>

科目: 来源: 题型:

【题目】根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误的是(

A.扇形统计图能反映各部分在总体中所占的百分比

B.每天阅读30分钟以上的居民家庭孩子超过50%

C.每天阅读1小时以上的居民家庭孩子占20%

D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°

查看答案和解析>>

科目: 来源: 题型:

【题目】已知反比例函数的图象经过点P(2,﹣3).

(1)求该函数的解析式;

(2)若将点P沿x轴负方向平移3个单位,再沿y轴方向平移n(n0)个单位得到点P′,使点P′恰好在该函数的图象上,求n的值和点P沿y轴平移的方向.

查看答案和解析>>

科目: 来源: 题型:

【题目】函数y=mx+n与,其中m≠0,n≠0,那么它们在同一坐标系中的图象可能是( )

A B C D

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.

(1)证明:PC=PE;

(2)求CPE的度数;

(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线y=x2﹣4x﹣5x轴交于A,B两点(电B在点A的右侧),与y轴交于点C,抛物线的对称轴与x轴交于点D.

(1)A,B,C三点的坐标及抛物线的对称轴.

(2)如图1,点E(m,n)为抛物线上一点,且2<m<5,过点EEFx轴,交抛物线的对称轴于点F,作EHx轴于点H,求四边形EHDF周长的最大值.

(3)如图2,点P为抛物线对称轴上一点,是否存在点P,使以点P,B,C为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】综合与实践 美妙的黄金矩形

阅读理解

在数学上称短边与长边的比是(约为0.618)的矩形叫做黄金矩形(GoldenRectangle),黄金矩形蕴藏着丰富的美学价值,给我们以协调、匀称的美感.

(1)某校团委举办四手抄报比赛,手抄报规格统一设计成:长是40cm的黄金矩形,则宽约为__________cm;(精确到0.1cm)

操作发现 利用一张正方形纸片折叠出一个黄金矩形.

第一步,如图1,折叠正方形纸片ABCD,使ABDC重合,得到折痕EF(点E,F分别在边AD,BC上),然后把纸片展平.

第二步,如图2,折叠正方形纸片ABCD,使得BC落在BE上,点C′和点C对应,得到折痕BG(点GCD上),再次纸片展平.

第三步,如图3,沿过点G的直线折叠正方形纸片ABCD,使点A和点D分别落在ABCD上,折痕为HG,显然四边形HBCG为矩形.

(2)在上述操作中,以AB=2为例,证明矩形HBCG是黄金矩形.

(参考计算: =

拓广探索

(3)“希望小组的同学通过探究发现:以黄金矩形的长边为一边,在原黄金矩形外作正方形,得到的新矩形仍然是黄金矩形.

如图4,如果四边形ABCD是黄金矩形(AB>AD),四边形DCEF是正方形,那么四边形ABEF也是黄金矩形,他们的发现正确吗?请说明理由.

查看答案和解析>>

同步练习册答案