【题目】综合与实践 美妙的黄金矩形
阅读理解
在数学上称短边与长边的比是(约为0.618)的矩形叫做黄金矩形(GoldenRectangle),黄金矩形蕴藏着丰富的美学价值,给我们以协调、匀称的美感.
(1)某校团委举办“五四手抄报比赛”,手抄报规格统一设计成:长是40cm的黄金矩形,则宽约为__________cm;(精确到0.1cm)
操作发现 利用一张正方形纸片折叠出一个黄金矩形.
第一步,如图1,折叠正方形纸片ABCD,使AB和DC重合,得到折痕EF(点E,F分别在边AD,BC上),然后把纸片展平.
第二步,如图2,折叠正方形纸片ABCD,使得BC落在BE上,点C′和点C对应,得到折痕BG(点G在CD上),再次纸片展平.
第三步,如图3,沿过点G的直线折叠正方形纸片ABCD,使点A和点D分别落在AB和CD上,折痕为HG,显然四边形HBCG为矩形.
(2)在上述操作中,以AB=2为例,证明矩形HBCG是黄金矩形.
(参考计算: =)
拓广探索
(3)“希望小组”的同学通过探究发现:以黄金矩形的长边为一边,在原黄金矩形外作正方形,得到的新矩形仍然是黄金矩形.
如图4,如果四边形ABCD是黄金矩形(AB>AD),四边形DCEF是正方形,那么四边形ABEF也是黄金矩形,他们的发现正确吗?请说明理由.
【答案】(1)24.7;(2)证明见解析;(3)四边形ABEF是黄金矩形这个结论正确.
【解析】
(1)根据黄金矩形的定义计算即可;
(2)如图2中,连接EG,设CG=C′G=x.由题意 在Rt△EGD和Rt△EGC′中, 解得可得,由此即可证明;
(3)如图4中,四边形ABEF是黄金矩形这个结论正确;设AB=a,则AD=BC=a,求出AB:BE的值即可判断;
解:(1)宽约为40×≈40×0.681≈24.7cm.
故答案为24.7.
(2)如图2中,连接EG,设CG=C′G=x.
∵AB=2,AE=ED=1,
∴
在Rt△EGD和Rt△EGC′中,
解得
∴
∴图3中的矩形HBCG是黄金矩形;
(3)如图4中,四边形ABEF是黄金矩形这个结论正确;
理由:设AB=a,则AD=BC=a,
∵四边形DCEF是正方形.
∴DC=DF=EF=CE=a,
∴
∴
∴矩形ABEF是黄金矩形.
科目:初中数学 来源: 题型:
【题目】垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.
运动员甲测试成绩表
测试序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成绩(分) | 7 | 6 | 8 | 7 | 7 | 5 | 8 | 7 | 8 | 7 |
(1)写出运动员甲测试成绩的众数为_____;运动员乙测试成绩的中位数为_____;运动员丙测试成绩的平均数为_____;
(2)经计算三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8,请综合分析,在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?
(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校在一次社会实践活动中,组织学生参观了虎园、烈士陵园、博物馆和植物园,为了解本次社会实践活动的效果,学校随机抽取了部分学生,对“最喜欢的景点”进行了问卷调查,并根据统计结果绘制了如下不完整的统计图.其中最喜欢烈士陵园的学生人数与最喜欢博物馆的学生人数之比为2:1,请结合统计图解答下列问题:
(1)本次活动抽查了 名学生;
(2)请补全条形统计图;
(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是 度;
(4)该校此次参加社会实践活动的学生有720人,请求出最喜欢烈士陵园的人数约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,M、N分别在AB、CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=32°,则∠OBC的度数为( )
A.32°B.48°C.58°D.68°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(﹣2,4),B(﹣4,1),C(0,1).
(1)画出与△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;
(2)画出以C1为旋转中心,将△A1B1C1逆时针旋转90°后的△A2B2C2;
(3)尺规作图:连接A1A2,在C1A2边上求作一点P,使得点P到A1A2的距离等于PC1的长(保留作图痕迹,不写作法);
(4)请直接写出∠C1A1P的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误的是( )
A.扇形统计图能反映各部分在总体中所占的百分比
B.每天阅读30分钟以上的居民家庭孩子超过50%
C.每天阅读1小时以上的居民家庭孩子占20%
D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知中,厘米,厘米,点为的中点.
(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等, 与是否可能全等?若能,求出全等时点Q的运动速度和时间;若不能,请说明理由.
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的面积为8cm2 , AP垂直∠B的平分线BP于P,则△PBC的面积为( )
A. 2cm2 B. 3cm2 C. 4cm2 D. 5cm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴交于A、B两点,与y轴交于点C(0,).
(1)_____,点A的坐标为______,点B的坐标为_____;
(2)设抛物线的顶点为M,求四边形ABMC的面积;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com