相关习题
 0  359372  359380  359386  359390  359396  359398  359402  359408  359410  359416  359422  359426  359428  359432  359438  359440  359446  359450  359452  359456  359458  359462  359464  359466  359467  359468  359470  359471  359472  359474  359476  359480  359482  359486  359488  359492  359498  359500  359506  359510  359512  359516  359522  359528  359530  359536  359540  359542  359548  359552  359558  359566  366461 

科目: 来源: 题型:

【题目】某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.

(1)求S与x之间的函数关系式,并写出自变量x的取值范围;

(2)设计费能达到24000元吗?为什么?

(3)当x是多少米时,设计费最多?最多是多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图,反比例函数y= 的图象与一次函数y=x+b的图象交

于点A(1,4)、点B(-4,n).

(1)求一次函数和反比例函数的解析式;

(2)求△OAB的面积;

(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.

请你根据图中信息,回答下列问题:

(1)本次共调查了  名学生.

(2)在扇形统计图中,歌曲所在扇形的圆心角等于  度.

(3)补全条形统计图(标注频数).

(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为  人.

(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知二次函数y=ax2+bx+c+2的图象如图所示,有下列4个结论:①abc<0;②b2=4ac;③a+c=b﹣2;④m(am+b)+b>a(m≠﹣1),其中结论正确的有____________.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AC=1,BC=,点ORt△ABC内一点,连接A0、BO、CO,且∠AOC=∠COB=BOA=120°,按下列要求画图(保留画图痕迹):以点B为旋转中心,将△AOB绕点B顺时针方向旋转60°,得到△A′O′B(得到A、O的对应点分别为点A′、O′),则∠A′BC=______,OA+OB+OC=______.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把CDB旋转90°,则旋转后点D的对应点D′的坐标是

查看答案和解析>>

科目: 来源: 题型:

【题目】二次函数y=ax2+bx+c (a≠0)的图象如图所示,对称轴是x=-1.下列结论:①ab>0;②b2>4ac;③a-b+2c<0;④8a+c<0.其中正确的是( )

A. ③④ B. ①②③ C. ①②④ D. ①②③④

查看答案和解析>>

科目: 来源: 题型:

【题目】《九章算术》中“今有勾七步,股有二十四步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为7步,股(长直角边)长为24步,问该直角三角形的容圆(内切圆)直径是多少?”( )

A. 4 B. 5 C. 6 D. 8

查看答案和解析>>

科目: 来源: 题型:

【题目】五一期间,某商场计划购进甲、乙两种商品,已知购进甲商品1件和乙商品3件共需240元;购进甲商品2件和乙商品1件共需130元.

1)求甲、乙两种商品每件的进价分别是多少元?

2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知AD既是△ABC的中线,又是角平分线,请判断:

(1)△ABC的形状;

(2)AD是否过△ABC外接圆的圆心O,⊙O是否是△ABC的外接圆,并证明你的结论.

查看答案和解析>>

同步练习册答案