科目: 来源: 题型:
【题目】如图,△ABC是等边三角形,D,E是BC上的两点,且BD=CE,连接AD、AE,将△AEC沿AC翻折,得到△AMC,连接EM交AC于点N,连接DM.以下判断:①AD=AE,②△ABD≌△DCM,③△ADM是等边三角形,④CN=
EC中,正确的是_____.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC的面积为12cm2,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于
MN的长为半径画弧,两弧交于点P,作射线AP,过点C作CD⊥AP于点D,连接DB,则△DAB的面积是_____cm2.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC中,AC=BC,AC的垂直平分线分别交AC,BC于点E,F.点D为AB边的中点,点M为EF上一动点,若AB=4,△ABC的面积是16,则△ADM周长的最小值为( )
![]()
A.20B.16C.12D.10
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(-6,0),D(-7,3),点B、C在第二象限内.
(1)点B的坐标 ;
(2)将正方形ABCD以每秒1个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;
(3)在(2)的情况下,问是否存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形?若存在,请求出符合题意的点P、Q的坐标;若不存在,请说明理由.
![]()
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(6,6),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB于点G,ED的延长线交线段OA于点H,连CH、CG.
![]()
(1)求证:△CBG≌△CDG;
(2)求∠HCG的度数;并判断线段HG、OH、BG之间的数量关系,说明理由;
(3)连结BD、DA、AE、EB得到四边形AEBD,在旋转过程中,四边形AEBD能否为矩形?如果能,请求出点H的坐标;如果不能,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线y=x2+bx+c与x轴交于点A(-3,0)、B(1,0),C为顶点,直线y=x+m经过点A,与y轴交于点D.
(1)求b、c的值;
(2)求∠DAO的度数和线段AD的长;
(3)平移该抛物线得到一条新抛物线,设新抛物线的顶点为C′,若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转得到△A′BO′,点A、O旋转后的对应点为A′、O′,记旋转角为α.
(1)如图①,若α=90°,求AA′的长;
(2)如图②,若α=120°,求点O′的坐标;
(3)记K为AB的中点,S为△KA′O′的面积,求S的取值范围(直接写出结果即可).
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】小明学习了特殊的四边形---平行四边形后,对特殊四边形的探究产生了兴趣,发现另外一类特殊四边形,如图1,我们把两条对角线互相垂直的四边形叫做垂美四边形.
(1)概念理在平行四边形、矩形、菱形、正方形中,一定是垂美四边形的是 .
(2)性质探究:如图1,四边形ABCD是垂美四边形,试探究两组对边AB、CD与BC、AD之间的数量关系.
(3)问题解决:如图2,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5.
①求证:四边形BCGE为垂美四边形;
②直接写出四边形BCGE的面积.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com