科目: 来源: 题型:
【题目】已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.
(1)求证:对于任意实数m,方程总有两个不相等的实数根;
(2)若方程的一个根是1,求m的值及方程的另一个根.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在O内有折线OABC,点B、C在圆上,点A在O内,其中OA=4cm,BC=14cm,∠A=∠B=,则AB的长为__________________
查看答案和解析>>
科目: 来源: 题型:
【题目】已知AC⊥BC于C,BC=a,CA=b,AB=c,下列图形中⊙O与△ABC的某两条边或三边所在的直线相切,则⊙O的半径为的是( )
A. B.
C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1cm/秒,点E运动的速度为2cm秒.如果两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是( )
A. 3或2.8 B. 3或4.8 C. 1或4 D. 1或6
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知二次函数y=﹣x2+bx+c(c>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.
(1)求二次函数的解析式;
(2)点P为线段BM上的一个动点,过点P作x轴的垂线PQ,垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;
(3)探索:线段BM上是否存在点N,使△NMC为等腰三角形?如果存在,求出点N的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在正方形ABCD中,AB=8,点P在边CD上,tan∠PBC=,点Q是在射线BP上的一个动点,过点Q作AB的平行线交射线AD于点M,点R在射线AD上,使RQ始终与直线BP垂直.
(1)如图1,当点R与点D重合时,求PQ的长;
(2)如图2,试探索: 的比值是否随点Q的运动而发生变化?若有变化,请说明你的理由;若没有变化,请求出它的比值;
(3)如图3,若点Q在线段BP上,设PQ=x,RM=y,求y关于x的函数关系式,并写出它的定义域.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,以AB为直径作⊙O,过点A作⊙O的切线AC,连结BC,交⊙O于点D,点E是BC边的中点,连结AE.
(1)求证:∠AEB=2∠C;
(2)若AB=6,,求DE的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿某一方向直航140海里的海岛B,其速度为14海里/小时;乙船速度为20海里/小时,先沿正东方向航行3小时后,到达C港口接旅客,停留1小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.
(1)求海岛B到航线AC的距离;
(2)甲船在航行至P处,发现乙船在其正东方向的Q处,问此时两船相距多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读下面材料:小昊遇到这样一个问题:如图1,在△ABC中,BE是AC边上的中线,点D在BC边上,,AD与BE相交于点P,求的值.
小昊发现,过点C作CF∥AD,交BE的延长线于点F,通过构造△CEF,经过推理和计算能够使问题得到解决(如图2).
请回答:写出的值.
参考小昊思考问题的方法,解决问题:
(1)如图3,在△ABC中,点D在BC的延长线上,,点E在AC上,且.求的值;
(2)如图4,在△ABC中,点D在BC的延长线上,,点E在AC上,且,直接写出的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在边长均为1的正方形网格中,AB是半圆形的直径.
(1)仅用无刻度的直尺,将图①的半圆形分成三个全等的扇形;
(2)在图②中,用直尺和圆规,以点O为圆心作一个与半圆形不全等的扇形,使得扇形的面积等于半圆形的面积,并写出作法.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com