相关习题
 0  359970  359978  359984  359988  359994  359996  360000  360006  360008  360014  360020  360024  360026  360030  360036  360038  360044  360048  360050  360054  360056  360060  360062  360064  360065  360066  360068  360069  360070  360072  360074  360078  360080  360084  360086  360090  360096  360098  360104  360108  360110  360114  360120  360126  360128  360134  360138  360140  360146  360150  360156  360164  366461 

科目: 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,双曲线y=与直线y=2x+2交于点A1a).

(1)求a,m的值;

(2)求该双曲线与直线y=﹣2x+2另一个交点B的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,RtABC的三个顶点分别是A(﹣32),B04),C02).

1)将ABC以点C为旋转中心旋转180°,画出旋转后对应的A1B1C1,平移ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的A2B2C2

2)若将A1B1C1绕某一点旋转可以得到A2B2C2,请直接写出旋转中心的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接ED,BE.

(1)求证:△ABD∽△AEB;

(2)当 = 时,求tanE;

(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,若△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点,易证:CD=BE,△AMN是等边三角形:

(1)当把△ADE绕点A旋转到图2的位置时,CD=BE吗?若相等请证明,若不等于请说明理由;

(2)当把△ADE绕点A旋转到图3的位置时,△AMN还是等边三角形吗?若是请证明,若不是,请说明理由(可用第一问结论).

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,如图①,在ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图②,设移动时间为t(s)(0<t<4),连接PQ,MQ,MC,解答下列问题:

(1)当t为何值时,PQ∥MN?

(2)设△QMC的面积为y(cm2),求y与t之间的函数关系式;

(3)是否存在某一时刻t,使S△QMC:S四边形ABQP=1:4?若存在,求出t的值;若不存在,请说明理由.

(4)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线 a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣10),其部分图象如图所示,下列结论:

①4acb2

方程 的两个根是x1=1x2=3

③3a+c0

y0时,x的取值范围是﹣1≤x3

x0时,yx增大而增大

其中结论正确的个数是(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线y=kx与双曲线y=﹣交于A(x1,y1),B(x2,y2)两点,则2x1y2﹣8x2y1的值为(

A. ﹣6 B. ﹣12 C. 6 D. 12

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线l:y=kx和抛物线C:y=ax2+bx+1.

1k=1,b=1时,抛物线C:y=ax2+bx+1的顶点在直线l:y=kx上,求a的值;

2若把直线l向上平移k2+1个单位长度得到直线r,则无论非零实数k取何值,直线r与抛物线C都只有一个交点;

(i)求此抛物线的解析式;

(ii)P是此抛物线上任一点,过点PPQy轴且与直线y=2交于点Q,O为原点,

求证:OP=PQ.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,3)三点.点DC出发,沿线段CO1个单位/秒的速度向终点O运动,过点DOC的垂线交BC于点E,作EF∥OC,交抛物线于点F.

(1)求此抛物线的解析式;

(2)小明在探究点D运动时发现,当点D与点C重合时,EF长度可看作O;②当点D与点O重合时,EF长度也可以看作O,于是他猜想:设点D运动到OC中点位置时,当线段EF最长,你认为他猜想是否正确,为什么?

(3)连接CF、DF,请直接写出△CDF为等腰三角形时所有t的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,直线轴交于点,与反比例函数在第一象限内的图像相交于点,将直线平移后与反比例函数图像在第一象限内交于点,且的面积为18,则平移后的直线解析式为__________

查看答案和解析>>

同步练习册答案