科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,⊙O的圆心A的坐标为(1,0),半径为1,点P为直线y=x+3上的动点,过点P作⊙A的切线,且点为B,则PB的最小值是 .
查看答案和解析>>
科目: 来源: 题型:
【题目】(定义)如图1,A,B为直线l同侧的两点,过点A作直线l的对称点,连接B交直线l于点P,连接AP,则称点P为点A,B关于直线的“等角点”.
(运用)如图2,在平面直坐标系xOy中,已知A(2,),B(-2,-)两点.
(1)C(4,),D(4,),E(4,)三点中,点 是点A,B关于直线x=4的等角点;
(2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的等角点,其中m>2,∠APB=α,求证:;
(3)若点P是点A,B关于直线y=ax+b(a≠0)的等角点,且点P位于直线AB的右下方,当∠APB=60°时,求b的取值范围(直接写出结果).
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,正方形ABCD中,AB=,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF.
(1)求证:AE=CF;
(2)若A,E,O三点共线,连接OF,求线段OF的长.
(3)求线段OF长的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,已知抛物线(k为常数).
(1)若抛物线经过点(1,k2),求k的值;
(2)若抛物线经过点(2k,y1)和点(2,y2),且y1>y2,求k的取值范围;
(3)若将抛物线向右平移1个单位长度得到新抛物线,当1≤x≤2时,新抛物线对应的函数有最小值,求k的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】小明购买A,B两种商品,每次购买同一种商品的单价相同,具体信息如下表:
次数 | 购买数量(件 | 购买总费用(元 | |
A | B | ||
第一次 | 2 | 1 | 55 |
第二次 | 1 | 3 | 65 |
根据以上信息解答下列问题:
(1)求A,B两种商品的单价;
(2)若第三次购买这两种商品共12件,且A种商品的数量不少于B种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:
17 | 18 | 16 | 13 | 24 | 15 | 28 | 26 | 18 | 19 |
22 | 17 | 16 | 19 | 32 | 30 | 16 | 14 | 15 | 26 |
15 | 32 | 23 | 17 | 15 | 15 | 28 | 28 | 16 | 19 |
对这30个数据按组距3进行分组,并整理、描述和分析如下.
频数分布表
组别 | 一 | 二 | 三 | 四 | 五 | 六 | 七 |
销售额 | |||||||
频数 | 7 | 9 | 3 | 2 | 2 |
数据分析表
平均数 | 众数 | 中位数 |
20.3 | 18 |
请根据以上信息解答下列问题:
(1)填空:a= ,b= ,c= ;
(2)若将月销售额不低于25万元确定为销售目标,则有 位营业员获得奖励;
(3)若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,已知A(2t,0),B(0,-2t),C(2t,4t)三点,其中t>0,函数的图象分别与线段BC,AC交于点P,Q.若S△PAB-S△PQB=t,则t的值为__.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,CD平分∠ACB交AB于点D,按下列步骤作图:
步骤1:分别以点C和点D为圆心,大于的长为半径作弧,两弧相交于M,N两点;
步骤2:作直线MN,分别交AC,BC于点E,F;
步骤3:连接DE,DF.
若AC=4,BC=2,则线段DE的长为
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线 y=﹣x2﹣2x+3 的图象与 x 轴交于 A、B 两点(点 A 在点 B 的左边),与 y轴交于点 C,点 D 为抛物线的顶点.
(1)求点 A、B、C 的坐标;
(2)点 M(m,0)为线段 AB 上一点(点 M 不与点 A、B 重合),过点 M 作 x 轴的垂线,与直线 AC 交于点 E,与抛物线交于点 P,过点 P 作 PQ∥AB 交抛物线于点 Q,过点 Q 作 QN⊥x 轴于点 N,可得矩形 PQNM.如图,点 P 在点 Q 左边,试用含 m 的式子表示矩形 PQNM 的周长;
(3)当矩形 PQNM 的周长最大时,m 的值是多少?并求出此时的△AEM 的面积;
(4)在(3)的条件下,当矩形 PMNQ 的周长最大时,连接 DQ,过抛物线上一点 F 作 y 轴的平行线,与直线 AC 交于点 G(点 G 在点 F 的上方).若 FG=2DQ,求点 F 的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com