相关习题
 0  360307  360315  360321  360325  360331  360333  360337  360343  360345  360351  360357  360361  360363  360367  360373  360375  360381  360385  360387  360391  360393  360397  360399  360401  360402  360403  360405  360406  360407  360409  360411  360415  360417  360421  360423  360427  360433  360435  360441  360445  360447  360451  360457  360463  360465  360471  360475  360477  360483  360487  360493  360501  366461 

科目: 来源: 题型:

【题目】如图,某教学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10 m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上)则这棵树CD的高度为( )

A. 10m B. 5m C. 5m D. 10m

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,我国两艘海监船 AB 在南海海域巡逻,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船 C,此时,B 船在A 船的正南方向 15 海里处,A 船测得渔船 C 在其南偏东 45°方向,B 船测得渔船 C 在其南偏东 53°方向,已知 A 船的航速为 30 海里/小时,B 船的航速为 25 海里/小时,问 C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈cos53°≈tan53°≈ 4 1.41 )

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,某无人机于空中A处探测到目标BD的俯角分别是30°60°,此时无人机的飞行高度AC60m.随后无人机从A处继续水平飞行30m到达A′处.

(1)AB之间的距离:

(2)求从无人机A上看目标D的俯角的正切值

查看答案和解析>>

科目: 来源: 题型:

【题目】(2017安徽省)如图,游客在点A处做缆车出发,沿ABD的路线可至山顶D处,假设ABBD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.

(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,∠C=150°,AC=4,tanB=.

(1)求BC的长;

(2)利用此图形求tan15°的值(精确到0.1,参考数据:≈1.4,≈1.7,≈2.2).

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,河的两岸l1l2相互平行,ABl1上的两点,CDl2上的两点,某人在点A处测得∠CAB=90°DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求CD两点间的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,DBC边上一点,AC=2,CD=1,设∠CAD=α

(1)试写出α的四个三角函数值;

(2)若∠B=α,求BD的长?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86 n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,此时B处与灯塔P的距离约为_______nmile.(结果取整数,参考数据:=1.7, ≈ 1.4)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知点C与某建筑物底端B相距306米(点C与点B在同一水平面上),某同学从点C出发,沿同一剖面的斜坡CD行走195米至坡顶D处,斜坡CD的坡度(或坡比)i=1:2.4,在D处测得该建筑物顶端A的俯视角为20°,则建筑物AB的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)(  )

A. 29.1 B. 31.9 C. 45.9 D. 95.9

查看答案和解析>>

科目: 来源: 题型:

【题目】定义:如图,若双曲线(k>0)与它的其中一条对称轴y=x相交于两点A,B,则线段AB的长称为双曲线(k>0)的对径.

(1)求双曲线的对径;

(2)若某双曲线(k>0)的对径是.求k的值.

查看答案和解析>>

同步练习册答案