相关习题
 0  360427  360435  360441  360445  360451  360453  360457  360463  360465  360471  360477  360481  360483  360487  360493  360495  360501  360505  360507  360511  360513  360517  360519  360521  360522  360523  360525  360526  360527  360529  360531  360535  360537  360541  360543  360547  360553  360555  360561  360565  360567  360571  360577  360583  360585  360591  360595  360597  360603  360607  360613  360621  366461 

科目: 来源: 题型:

【题目】如图1,抛物线y=﹣x2+mx+nx轴于点A﹣20)和点B,交y轴于点C02).

1)求抛物线的函数表达式;

2)若点M在抛物线上,且SAOM=2SBOC,求点M的坐标;

3)如图2,设点N是线段AC上的一动点,作DNx轴,交抛物线于点D,求线段DN长度的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,AB为⊙O直径,C是⊙O上一点,COAB于点O,弦CDAB交于点F,过点D作∠CDE=∠DFEDEAB的延长线于点E,过点A作⊙O的切线交ED的延长线于点G

(1)求证:GE是⊙O的切线;

(2)tanCBE4,求AG的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点A(a,﹣)在直线y=﹣上,ABy轴,且点B的纵坐标为1,双曲线y经过点B

(1)a的值及双曲线y的解析式;

(2)经过点B的直线与双曲线y的另一个交点为点C,且△ABC的面积为

①求直线BC的解析式;

②过点BBDx轴交直线y=﹣于点D,点P是直线BC上的一个动点.若将△BDP以它的一边为对称轴进行翻折,翻折前后的两个三角形所组成的四边形为正方形,直接写出所有满足条件的点P的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】作图并填空

如图,在RtABC,∠BAC90°ADBCD,在②③图中,MNAB,∠MNE=∠B,现要以②③图为基础,在射线NE上确定一点P,构造出一个△MNP与①图中某一个三角形全等.

(1)用边长限制P点,画法:_____,可根据SASAASASAHL中的______得到______

(2)用直角限制点P,画法:_______,可根据SASAASASAHL中的______得到______

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正方形ABCD中,AB4cm,点EF同时从C点出发,以1cm/s的速度分别沿CBBACDDA运动,到点A时停止运动.设运动时间为t(s),△AEF的面积为S(cm2),则S(cm2)t(s)的函数关系可用图象表示为( )

A. B.

C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数yax2+bx3x轴于点A(﹣30)、B10),在y轴上有一点E01),连接AE

1)求二次函数的表达式;

2)若点D为抛物线在x轴负半轴下方的一个动点,求△ADE面积的最大值;

3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,O为菱形ABCD对角线上一点,以点O为圆心,OA长为半径的⊙OBC相切于点M

1)求证:CD与⊙O相切;

2)若菱形ABCD的边长为2,∠ABC60°,求⊙O的半径.

查看答案和解析>>

科目: 来源: 题型:

【题目】凤城商场经销一种高档水果,售价为每千克50

1)连续两次降价后售价为每千克32元,若每次下降的百分率相同.求平均下降的百分率;

2)已知这种水果的进价为每千克40元,每天可售出500千克,经市场调查发现,若每千克涨价1元,日销售量将减少20千克,每千克应涨价多少元才能使每天获得的利润最大?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°,点DE分别在ABAC上,且CEBC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF

1)求证:△BDC≌△EFC

2)若EFCD,求证:∠BDC90°.

查看答案和解析>>

科目: 来源: 题型:

【题目】凤城中学九年级(3)班的班主任让同学们为班会活动设计一个摸球方案,这些球除颜色外都相同,拟使中奖概率为50%

1)小明的设计方案:在一个不透明的盒子中,放入黄、白两种颜色的球共6个,搅匀后从中任意摸出1个球,摸到黄球则表示中奖,否则不中奖.如果小明的设计符合老师要求,则盒子中黄球应有   个,白球应有   个;

2)小兵的设计方案:在一个不透明的盒子中,放入2个黄球和1个白球,搅匀后从中任意摸出2个球,摸到的2个球都是黄球则表示中奖,否则不中奖,该设计方案是否符合老师的要求?试说明理由.

查看答案和解析>>

同步练习册答案