相关习题
 0  360738  360746  360752  360756  360762  360764  360768  360774  360776  360782  360788  360792  360794  360798  360804  360806  360812  360816  360818  360822  360824  360828  360830  360832  360833  360834  360836  360837  360838  360840  360842  360846  360848  360852  360854  360858  360864  360866  360872  360876  360878  360882  360888  360894  360896  360902  360906  360908  360914  360918  360924  360932  366461 

科目: 来源: 题型:

【题目】如图,正方形ABCD的边长为4EBC边的中点,点P在射线AD上,过PPFAEF,设PAx

(1)求证:△PFA∽△ABE

(2)若以PFE为顶点的三角形也与△ABE相似,试求x的值;

(3)试求当x取何值时,以D为圆心,DP为半径的⊙D与线段AE只有一个公共点.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,△ABC的位置如图所示.(每个小方格都是边长为1个单位长度的正方形)

(1)画出△ABC关于原点对称的△A'B'C';

(2)将△A'B'C'绕点C'顺时针旋转90°,画出旋转后得到的△ABC″,并直接写出此过程中线段C'A'扫过图形的面积.(结果保留π)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,一次函数y1xx轴交点A恰好是二次函数y2x轴的其中一个交点,已知二次函数图象的对称轴为x1,并与y轴的交点为D(01)

(1)求二次函数的解析式;

(2)设该二次函数与一次函数的另一个交点为C点,连接DC,求三角形ADC的面积.

(3)根据图象,直接写出当y1y2x的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知四边形ABCD是平行四边形,PDC延长线上一点,AP分别交BDBC于点MN

(1)图中相似三角形共有_____对;

(2)证明:AM2MNMP

(3)AD6DCCP21,求BN的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,AD是高,BD6CD4tanBADP是线段AD上一动点,一机器人从点A出发沿AD个单位/秒的速度走到P点,然后以1个单位/秒的速度沿PC走到C点,共用了t秒,则t的最小值为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为(  )

A. 10 B. 9 C. 8 D. 7

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1A、B两点,并与过A点的直线y=﹣x﹣1交于点C.

(1)求抛物线解析式及对称轴;

(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;

(3)点My轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】(2016江苏省镇江市) (2016镇江)如图1,一次函数y=kx﹣3(k≠0)的图象与y轴交于点A,与反比例函数x>0)的图象交于点B(4,b).

(1)b= k=

(2)点C是线段AB上的动点(于点AB不重合),过点C且平行于y轴的直线l交这个反比例函数的图象于点D,求OCD面积的最大值;

(3)将(2)中面积取得最大值的OCD沿射线AB方向平移一定的距离,得到OCD,若点O的对应点O落在该反比例函数图象上(如图2),则点D的坐标是

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,AD是圆O的切线,切点为AAB是圆O的弦。过点BBC//AD,交圆O于点C,连接AC,过点CCD//AB,交AD于点D。连接AO并延长交BC于点M,交过点C的直线于点P,且BCP=ACD

1判断直线PC与圆O的位置关系,并说明理由:

2 AB=9BC=6,求PC的长。

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高3米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有27米的距离(BFC在一条直线上).

(1)求办公楼AB的高度;

(2)若要在AE之间挂一些彩旗,请你求出AE之间的距离.

(参考数据:sin22°cos22°tan22°

查看答案和解析>>

同步练习册答案