科目: 来源: 题型:
【题目】如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF⊥AE于F,设PA=x.
(1)求证:△PFA∽△ABE;
(2)若以P,F,E为顶点的三角形也与△ABE相似,试求x的值;
(3)试求当x取何值时,以D为圆心,DP为半径的⊙D与线段AE只有一个公共点.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,△ABC的位置如图所示.(每个小方格都是边长为1个单位长度的正方形)
(1)画出△ABC关于原点对称的△A'B'C';
(2)将△A'B'C'绕点C'顺时针旋转90°,画出旋转后得到的△A″B″C″,并直接写出此过程中线段C'A'扫过图形的面积.(结果保留π)
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,一次函数y1=x﹣
与x轴交点A恰好是二次函数y2与x轴的其中一个交点,已知二次函数图象的对称轴为x=1,并与y轴的交点为D(0,1).
(1)求二次函数的解析式;
(2)设该二次函数与一次函数的另一个交点为C点,连接DC,求三角形ADC的面积.
(3)根据图象,直接写出当y1>y2时x的取值范围.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知四边形ABCD是平行四边形,P为DC延长线上一点,AP分别交BD,BC于点M,N.
(1)图中相似三角形共有_____对;
(2)证明:AM2=MNMP;
(3)若AD=6,DC:CP=2:1,求BN的长.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,AD是高,BD=6,CD=4,tan∠BAD=
,P是线段AD上一动点,一机器人从点A出发沿AD以
个单位/秒的速度走到P点,然后以1个单位/秒的速度沿PC走到C点,共用了t秒,则t的最小值为_____.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣
x﹣1交于点C.
(1)求抛物线解析式及对称轴;
(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;
(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】(2016江苏省镇江市) (2016镇江)如图1,一次函数y=kx﹣3(k≠0)的图象与y轴交于点A,与反比例函数
(x>0)的图象交于点B(4,b).
(1)b= ;k= ;
(2)点C是线段AB上的动点(于点A、B不重合),过点C且平行于y轴的直线l交这个反比例函数的图象于点D,求△OCD面积的最大值;
(3)将(2)中面积取得最大值的△OCD沿射线AB方向平移一定的距离,得到△O′C′D′,若点O的对应点O′落在该反比例函数图象上(如图2),则点D′的坐标是 .
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AD是圆O的切线,切点为A,AB是圆O的弦。过点B作BC//AD,交圆O于点C,连接AC,过点C作CD//AB,交AD于点D。连接AO并延长交BC于点M,交过点C的直线于点P,且BCP=ACD。
![]()
(1)判断直线PC与圆O的位置关系,并说明理由:
(2) 若AB=9,BC=6,求PC的长。
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高3米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有27米的距离(B,F,C在一条直线上).
![]()
(1)求办公楼AB的高度;
(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.
(参考数据:sin22°≈
,cos22°≈
,tan22°≈
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com