相关习题
 0  360769  360777  360783  360787  360793  360795  360799  360805  360807  360813  360819  360823  360825  360829  360835  360837  360843  360847  360849  360853  360855  360859  360861  360863  360864  360865  360867  360868  360869  360871  360873  360877  360879  360883  360885  360889  360895  360897  360903  360907  360909  360913  360919  360925  360927  360933  360937  360939  360945  360949  360955  360963  366461 

科目: 来源: 题型:

【题目】如图,在RtABO中,∠BAO90°AOABBO8,点A的坐标(﹣80),点C在线段AO上以每秒2个单位长度的速度由AO运动,运动时间为t秒,连接BC,过点AADBC,垂足为点E,分别交BO于点F,交y轴于点 D

1)用t表示点D的坐标   

2)如图1,连接CF,当t2时,求证:∠FCO=∠BCA

3)如图2,当BC平分∠ABO时,求t的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,已知抛物线yax2a0)与一次函数ykx+b的图象相交于A(﹣1,﹣1),B2,﹣4)两点,点P是抛物线上不与AB重合的一个动点,点Qy轴上的一个动点.

1)请直接写出akb的值及关于x的不等式ax2kx2的解集;

2)当点P在直线AB上方时,请求出△PAB面积的最大值并求出此时点P的坐标;

3)是否存在以PQAB为顶点的四边形是平行四边形?若存在,请直接写出PQ的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图:

请你根据统计图回答下列问题:

(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图;

(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?

(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?

(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】ABCD中,过点DDEAB于点E,点FCD上,CF=AE连接BFAF

1)求证:四边形BFDE是矩形;

2)若AF平分∠BAD,且AE=3DE=4,求矩形BFDE的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】“三等分任意角”是数学史上一个著名问题,经过无数人探索,现在已经确信,仅用圆规直尺是不可能做出的.在探索过程中,我们发现,可以利用一些特殊的图形,把一个任意角三等分.如图:在∠MAN的边上任取一点B,过点B作BC⊥AN于点C,并作BC的垂线BF,连接AF,E是AF上一点,当AB=BE=EF时,有∠FAN=∠MAN,请你证明.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,RtAOB中,ABOB,且AB=OB=3,设直线截此三角形所得阴影部分的面积为S,则St之间的函数关系的图象为下列选项中的(  )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,ABC中,∠C90°AC16cmBC8cm,一动点P从点C出发沿着CB方向以2cm/s的速度运动,另一动点QA出发沿着AC边以4cm/s的速度运动,PQ两点同时出发,运动时间为ts).

1)若PCQ的面积是ABC面积的,求t的值?

2PCQ的面积能否与四边形ABPQ面积相等?若能,求出t的值;若不能,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与ABC相似时,运动时间是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图平分

1】求的度数

2】如图,若把变成FDA的延长线上,,其它条件不变,求的度数;

3】如图,若把变成平分,其它条件不变,的大小是否变化,并请说明理由.(此题9分)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,在正方形ABCD中,AB=3,EAD边上的一点(EAD不重合),以BE为边画正方形BEFG,边EF与边CD交于点H.

(1)E为边AD的中点时,求DH的长;

(2)DE=xCH=y,yx之间的函数关系式并求出y的最小值;

(3)DE=,将正方形BEFG绕点E逆时针旋转适当角度后得到正方形B'EF'G',如图2,边EF'CD交于点NEB'BC交于点M,连结MN,求∠ENM的度数.

查看答案和解析>>

同步练习册答案