相关习题
 0  360794  360802  360808  360812  360818  360820  360824  360830  360832  360838  360844  360848  360850  360854  360860  360862  360868  360872  360874  360878  360880  360884  360886  360888  360889  360890  360892  360893  360894  360896  360898  360902  360904  360908  360910  360914  360920  360922  360928  360932  360934  360938  360944  360950  360952  360958  360962  360964  360970  360974  360980  360988  366461 

科目: 来源: 题型:

【题目】某水果店在两周内,将标价为10/斤的某种水果,经过两次降价后的价格为8.1/斤,并且两次降价的百分率相同.

(1)求该种水果每次降价的百分率;

(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1/斤,设销售该水果第x(天)的利润为y(元),求yx(1x15)之间的函数关系式,并求出第几天时销售利润最大?

时间x(天)

1x9

9x15

x15

售价(元/斤)

1次降价后的价格

2次降价后的价格

销量(斤)

80﹣3x

120﹣x

储存和损耗费用(元)

40+3x

3x2﹣64x+400

(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知直线AC的表达式为yx8,点P从点A开始沿AO向点O1个单位/s的速度移动,点Q从点O开始沿OC向点C2个单位/s的速度移动.如果PQ两点分别从点AO同时出发,经过几秒能使PQO的面积为8个平方单位?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,旗杆AB的顶端B在夕阳的余辉下落在一个斜坡上的点D处,某校数学课外兴趣小组的同学正在测量旗杆的高度,在旗杆的底部A处测得点D的仰角为15°,AC=10米,又测得BDA=45°.已知斜坡CD的坡度为i=1:,求旗杆AB的高度(1.7,结果精确到个位).

查看答案和解析>>

科目: 来源: 题型:

【题目】若关于x的一元二次方程(x2)(x3=m有实数根x1,x2,且x1≠x2,有下列结论:

①x1=2x2=3

二次函数y=xx1)(xx2)+m的图象与x轴交点的坐标为(20)和(30).

其中,正确结论的个数是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,AB是⊙O的直径,,连结AC,过点C作直线lAB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.

(1)求∠BAC的度数;

(2)当点DAB上方,且CDBP时,求证:PC=AC;

(3)在点P的运动过程中

①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;

②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出BDE的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点QQO⊥BD,垂足为O,连接OA、OP.

(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?

(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;

(3)在平移变换过程中,设y=SOPB,BP=x(0≤x≤2),求yx之间的函数关系式,并求出y的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与ABC相似时,运动时间是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在正方形和正方形中,点上,,将正方形绕点顺时针旋转,得到正方形,此时点上,连接,则( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】抛物线yx2+bx+c经过点ABC,已知A(﹣10),C0,﹣3).

1)求抛物线的解析式;

2)如图1,抛物线顶点为EEFx轴于F点,Mm0)是x轴上一动点,N是线段EF上一点,若∠MNC90°,请指出实数m的变化范围,并说明理由.

3)如图2,将抛物线平移,使其顶点E与原点O重合,直线ykx+2k0)与抛物线相交于点PQ(点P在左边),过点Px轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知如图 1,在ABC 中,ACB90°BCAC,点 D AB 上,DEAB BC E,点 F AE 的中点

1 写出线段 FD 与线段 FC 的关系并证明;

2 如图 2,将BDE 绕点 B 逆时针旋转αα90°),其它条件不变,线段 FD 与线段 FC 的关系是否变化,写出你的结论并证明;

3 BDE 绕点 B 逆时针旋转一周,如果 BC4BE2,直接写出线段 BF 的范围.

查看答案和解析>>

同步练习册答案