科目: 来源: 题型:
【题目】如图,抛物线与坐标轴分别交于点、,其中有,,过抛物线对称轴左侧的一点做轴于点,点在上运动,点是上的动点,连接,.
(1)求抛物线的解析式及点的坐标;
(2)求的最小值;
(3)点是对称轴的左侧抛物线上的一个点,当时,求点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】一个汽车零件制造车间可以生产甲,乙两种零件,生产4个甲种零件和3个乙种零件共获利120元;生产2个甲种零件和5个乙种零件共获利130元.
(1)求生产1个甲种零件,1个乙种零件分别获利多少元?
(2)若该汽车零件制造车间共有工人30名,每名工人每天可生产甲种零件6个或乙种零件5个,每名工人每天只能生产同一种零件,要使该车间每天生产的两种零件所获总利润超过2800元,至少要派多少名工人去生产乙种零件?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD交于点O,AO=BO,DE平分∠ADC交BC于点E,连接OE.
(1)求证:四边形ABCD是矩形;
(2)若AB=2,求△OEC的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】马山被誉为“中国民间文化艺术之乡”,马山的民族文化丰富多彩,形式多样.为了了解某学学生对马山民族文化的喜爱情况,某校开展了“我最喜爱的民俗活动”调查问卷,其中包括:壮族三声部民歌,壮族扁担舞,会鼓,采茶舞.将调查问卷结果收集整理后,绘制了以下不完整的条形统计图(图①)和扇形统计图(图②),根据图中所提供的信息解答下列问题:
(1)这次抽样调查中,一共抽查了名学生,项所对应圆心角的度数为;
(2)请补全条形统计图;
(3)若九(1)班要从甲、乙、丙和丁这四人中选两个人参与调查,请用列表法或画树状图法求出恰好选中甲乙的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,三个顶点的坐标分别为,,.
(1)请画出向下平移6个单位长度后得到的;
(2)请画出绕原点顺时针旋转后得到的;
(3)求出(2)中点旋转到点所经过的路径长(结果保留根号和).
查看答案和解析>>
科目: 来源: 题型:
【题目】问题情境:
我们知道若一个矩形的周长固定,当相邻两边相等,即为正方形时,面积是最大的,反过来,若一个矩形的面积固定,它的周长是否会有最值呢?
方法探究:
用两条直角边分别为、的四个全等的直角三角形,可以拼成一个正方形,
若,可以拼成如图1的正方形,从而得到,即;
若,可以拼成如图2的正方形,从而得到,即.
于是我们可以得到结论:,为正数,总有,且当时,代数式取得最小值为.
另外,我们也可以通过代数式运算得到类似上面的结论.
∵,
∴,,
∴对于任意实数,,总有,
且当时,代数式取得最小值为.
类比应用:
(1)对于正数,,试比较和的大小关系,并说明理由.
(2)填空:
当时,________.
代数式有最________值为________.
问题解决:
(3)若一个矩形的面积固定为,它的周长是否会有最值呢?若有,求出周长的最值,及此时矩形的长和宽;若没有,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在中,,,.点从点出发,沿向终点运动,同时点从点出发,沿射线运动,它们的速度均为每秒5个单位长度,点到达终点时,、同时停止运动.当点不与点、重合时,过点作于点,连结,以、为邻边作.设与重叠部分的面积为,运动时间为秒.
(1)用含的代数式表示的长为________;
(2)是否存在某一时刻,使四边形为矩形,若存在,求出的值;若不存在,请说明理由;
(3)时,求与的函数关系式.
查看答案和解析>>
科目: 来源: 题型:
【题目】某商店出售一款商品,经市场调查反映,该商品的日销售量y(件)与销售单价x(元)之间满足一次函数关系,关于该商品的销售单价,日销售量,日销售利润的部分对应数据如表:[注:日销售利润=日销售量×(销售单价﹣成本单价)
销售单价x(元) | 75 | 78 | 82 |
日销售量y(件) | 150 | 120 | 80 |
日销售利润w(元) | 5250 | a | 3360 |
(1)根据以上信息,填空:该产品的成本单价是 元,表中a的值是 ,y关于x的函数关系式是 ;
(2)求该商品日销售利润的最大值.
(3)由于某种原因,该商品进价降低了m元/件(m>0),该商店在今后的销售中,商店规定该商品的销售单价不低于68元,日销售量与销售单价仍然满足(1)中的函数关系,若日销售最大利润是6600元,直接写出m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com