科目: 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c(a≠0)的图象与x轴的相交情况,关于下列结论:
①方程ax2+bx=0的两个根为x1=0,x2=﹣4;②b﹣4a=0;③9a+3b+c<0;其中正确的结论有( )
![]()
A. 0个B. 1个C. 2个D. 3个
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线
(其中
、
为常数且
)与
轴交于
和
两点,与
轴交于点
.
(1)当
时,求抛物线的对称轴方程及顶点坐标;
(2)填空:
__________,点
的坐标为____________.(以上结果均用含
的式子表示);
(3)连接
,线段
的垂直平分线交抛物线的对称轴于点
,
轴上存在一点
(异于点
)使得
.
①求点
的坐标;
②点
关于抛物线对称轴的对称点为点
,试求
面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某文具店经营某种品牌的文具盒,购进时的单价是30元,根据统计调查:在一段时间内,销售单价是40元时,文具盒销售量是600个,而销售单价每涨2元,就会少售出20个文具盒.
(1)不妨设该种品牌文具盒的销售单价为
元(
),请你分别用
的代数式来表示销售量
个和销售该品牌文具盒获得利润
元,并把结果填写在表格中:
销售单价(元) |
|
销售量 | __________________ |
销售文具盒获得利润 | ____________________ |
(2)在(1)问条件下,若该文具店获得了6000元销售利润,求该文具盒销售单价
应定为多少元?
(3)在(1)问条件下,若厂家规定该品牌文具盒销售单价不低于44元,且文具店要完成不少于380个的销售目标,求该文具店销售该品牌文具盒获得的最大利润是多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,将半径为4的
沿弦
折叠,圆上点
折叠后恰好与圆点
重合,连接
并延长交
于点
,连接
.点
为弧
上一点,
、
分别为线段
、
上一动点,则
周长的最小值为___________.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在矩形ABCD中,点P在AD上,AB=2,AP=1.直角尺的直角顶点放在点P处,直角尺的两边分别交AB、BC于点E、F,连接EF(如图1).
![]()
(1)当点E与点B重合时,点F恰好与点C重合(如图2).
①求证:△APB∽△DCP;
②求PC、BC的长.
(2)探究:将直角尺从图2中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中(图1是该过程的某个时刻),观察、猜想并解答:
① tan∠PEF的值是否发生变化?请说明理由.
② 设AE=x,当△PBF是等腰三角形时,请直接写出x的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,1),B(1,-2),C(3,-1),P(m,n)是△ABC的边AB上一点.
![]()
(1)画出△A1B1C1,使△A1B1C1与△ABC关于点O成中心对称,并写出点A、P的对应点A1、P1的坐标.
(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出将△A1B1C1放大后的△A2B2C2,并分别写出点A1、P1的对应点A2、P2的坐标.
(3)求sin∠B2A2C2的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】一个不透明的盒子中,装有2个白球和1个红球,这些球除颜色外其余都相同.
(1)你同意下列说法吗?请说明理由.
①搅匀后从中任意摸出一个球,不是白球就是红球,因此摸出白球和摸出红球这两个事件是等可能的.
②如果将摸出的第一个球放回搅匀后再摸出第二个球,两次摸球就可能出现3种结果,即“都是红球”、“都是白球”、“一红一白”.这三个事件发生的概率相等.
(2)搅匀后从中任意摸出一个球,要使摸出红球的概率为
,应如何添加红球?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知在平面直角坐标系xOy中(如图),抛物线y=ax2-4与x轴的负半轴相交于点A,与y轴相交于点B,AB=2
.点P在抛物线上,线段AP与y轴的正半轴交于点C,线段BP与x轴相交于点D,设点P的横坐标为m.
(1)求这条抛物线的解析式;
(2)用含m的代数式表示线段CO的长;
(3)当tan∠ODC=
时,求∠PAD的正弦值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】跳绳时,绳甩到最高处时的形状是抛物线. 正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0. 9米,身高为1. 4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E. 以点O为原点建立如图所示的平面直角坐标系, 设此抛物线的解析式为
.
(1)求该抛物线的解析式;
(2)如果身高为1. 85米的小华也想参加跳绳,问绳子能否顺利从他头顶越过?请说明理由;
(3)如果一群身高在1. 4米到1. 7米之间的人站在OD之间,且离点O的距离为t米, 绳子甩到最高处时必须超过他们的头顶,请结合图像,写出t的取值范围_______________.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com