科目: 来源: 题型:
【题目】如图,在正方形ABCD中,E为边AD上的点,点F在边CD上,且CF=3FD,∠BEF=90°
(1)求证:△ABE∽△DEF;
(2)若AB=4,延长EF交BC的延长线于点G,求BG的长
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在⊙O中,分别将、沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,若⊙O的半径为4,则四边形ABCD的面积是( )
A.8B.C.32D.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,抛物线y=﹣4x2﹣8mx﹣m2+2m的顶点p.
(1)点p的坐标为 (含m的式子表示)
(2)当﹣1≤x≤1时,y的最大值为5,则m的值为多少;
(3)若抛物线与x轴(不包括x轴上的点)所围成的封闭区域只含有1个整数点,求m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读材料:小胖同学遇到这样一个问题,如图1,在△ABC中,∠ABC=45°,AB=2,AD=AE,∠DAE=90°,CE=,求CD的长;
小胖经过思考后,在CD上取点F使得∠DEF=∠ADB(如图2),进而得到∠EFD=45°,试图构建“一线三等角”图形解决问题,于是他继续分析,又意外发现△CEF∽△CDE.
(1)请按照小胖的思路完成这个题目的解答过程.
(2)参考小胖的解题思路解决下面的问题:
如图3,在△ABC中,∠ACB=∠DAC=∠ABC,AD=AE,∠EAD+∠EBD=90°,求BE:ED.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,直线AB与x、y轴分别相交于点B、A,点C为x轴上一点,以AB、BC为边作平行四边形ABCD,连接BD,BD=BC,将△AOB沿x轴从左向右以每秒一个单位的速度运动,当点O和点C重合时运动停止,设△AOB与△BCD重合部分的面积为S,运动时间为t秒,S与t之间的函数如图(2)所示(其中0<t≤2,2<t≤m,m<t<n时函数解析式不同).
(1)点B的坐标为 ,点D的坐标为 ;
(2)求S与t的函数解析式,并写出t的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB是⊙O的直径,点C在圆O上,BE⊥CD垂足为E,CB平分∠ABE,连接BC
(1)求证:CD为⊙O的切线;
(2)若cos∠CAB=,CE=,求AD的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】(发现)在解一元二次方程的时候,发现有一类形如x2+(m+n)x+mn=0的方程,其常数项是两个因数的积,而它的一次项系数恰好是这两个因数的和,则我们可以把它转化成x2+(m+n)x+mn=(m+x)(m+n)=0
(探索)解方程:x2+5x+6=0:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3),原方程可转化为(x+2)(x+3)=0,即x+2=0或x+3=0,进而可求解.
(归纳)若x2+px+q=(x+m)(x+n),则p= q= ;
(应用)
(1)运用上述方法解方程x2+6x+8=0;
(2)结合上述材料,并根据“两数相乘,同号得正,异号得负“,求出一元二次不等式x2﹣2x﹣3>0的解.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知直线y1=﹣x+3与x轴交于点B,与y轴交于点C,抛物y2=ax2+bx+c经过点B,C并与x轴交于点A(﹣1,0).
(1)求抛物线解析式,并求出抛物线的顶点D坐标 ;
(2)当y2<0时、请直接写出x的取值范围 ;
(3)当y1<y2时、请直接写出x的取值范围 ;
(4)将抛物线y2向下平移,使得顶点D落到直线BC上,求平移后的抛物线解析式 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com