科目: 来源: 题型:
【题目】如图,△ABC内接于⊙O,∠ABC和 ∠BAC的平分线交于点E,延长AE分别交BC, ⊙O于点F, D,连接BD.
(1)求证: BD=DE.
(2)若BD=6,AD=10,求EF的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,△AOB的位置如图所示,∠AOB=90°,AO=BO,点A的坐标为(-1, 2) .抛物线y = ax2 + bx (a≠0)恰好经过A, B两点.
(1)直接写出点B坐标 .
(2)求该抛物线的函数表达式.
(3)设A关于抛物线的对称轴l的对称点为A',求△AA' B的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,AC=BC=5, AB=6, 点D为AC上一点,作DE//AB交BC于点E,点C关于DE的对称点为点O,以OA为半径作⊙O恰好经过点C,并交直线DE于点M,N.则MN的值为__________.
查看答案和解析>>
科目: 来源: 题型:
【题目】我们知道,勾股定理反映了直角三角形三条边的关系: a2+b2=c2, 而a2, b2, c2又可以看成是以a,b, c为边长的正方形的面积.如图,在Rt△ABC中,∠ACB=90°,BC=a, AC=b,O为AB的中点.分别以AC,BC 为边向△ABC外作正方形ACFG,BCED,连结OF, EF, OE,则△OEF的面积为( )
A.B.C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司需招聘一名员工,对应聘者甲、乙、丙、丁从笔试、面试两个方面进行量化考核.甲、乙、丙、丁两项得分如下表:(单位:分)
甲 | 乙 | 丙 | 丁 | |
笔试 | ||||
面试 |
(1)这名选手笔试成绩的中位数是____________分,面试的众数是_____________分;
(2)该公司规定:笔试、面试分别按,的比例计总分,请比较甲、乙的总分的大小.
查看答案和解析>>
科目: 来源: 题型:
【题目】超越公司将某品牌农副产品运往新时代市场进行销售,记汽车行驶时为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如下表:
v(千米/小时) | 75 | 80 | 85 | 90 | 95 |
t(小时) | 4.00 | 3.75 | 3.53 | 3.33 | 3.16 |
(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;
(2)汽车上午7:30从超越公司出发,能否在上午10:00之前到达新时代市场?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】“早黑宝”葡萄品种是我省农科院研制的优质新品种,在我省被广泛种植,邓州市某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“卓黑宝”的种植面积达到196亩.
(1)求该基地这两年“早黑宝”种植面积的平均增长率;
(2)市场调查发现,当“早黑宝”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1750元,则售价应降低多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,半圆D的直径AB=4,线段OA=7,O为原点,点B在数轴的正半轴上运动,点B在数轴上所表示的数为m.
(1)当半圆D与数轴相切时,m= .
(2)半圆D与数轴有两个公共点,设另一个公共点是C.
①直接写出m的取值范围是 .
②当BC=2时,求△AOB与半圆D的公共部分的面积.
(3)当△AOB的内心、外心与某一个顶点在同一条直线上时,求tan∠AOB的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com