相关习题
 0  365240  365248  365254  365258  365264  365266  365270  365276  365278  365284  365290  365294  365296  365300  365306  365308  365314  365318  365320  365324  365326  365330  365332  365334  365335  365336  365338  365339  365340  365342  365344  365348  365350  365354  365356  365360  365366  365368  365374  365378  365380  365384  365390  365396  365398  365404  365408  365410  365416  365420  365426  365434  366461 

科目: 来源: 题型:

【题目】如图,已知矩形ABCD和矩形EFGO在平面直角坐标系中,点BF的坐标分别为(4,4)(2,1).若矩形ABCD和矩形EFGO是位似图形,点P(PGC)是位似中心,则点P的坐标为(  )

A. (0,3)

B. (0,2.5)

C. (0,2)

D. (0,1.5)

查看答案和解析>>

科目: 来源: 题型:

【题目】抛物线yx2+bx+c经过点ABC,已知A(﹣10),C0,﹣3).

1)求抛物线的解析式;

2)如图1,抛物线顶点为EEFx轴于F点,Mm0)是x轴上一动点,N是线段EF上一点,若∠MNC90°,请指出实数m的变化范围,并说明理由.

3)如图2,将抛物线平移,使其顶点E与原点O重合,直线ykx+2k0)与抛物线相交于点PQ(点P在左边),过点Px轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】ABC中,已知AB=AC,BAC=90°,E为边AC上一点,连接BE.

(1)如图1,若ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;

(2)如图2,D为AB上一点,且满足AE=AD,过点A作AFBE交BC于点F,过点F作FGCD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽ABxm,面积为Sm2

1)求Sx的函数关系式及x值的取值范围;

2)要围成面积为45m2的花圃,AB的长是多少米?

3)当AB的长是多少米时,围成的花圃的面积最大,最大面积为多少m2

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,一次函数ykx+b(k≠0)的图象与反比例函数y (n≠0)的图象交于第二、四象限内的AB两点,与x轴交于点C,点B 坐标为(m,﹣1)ADx轴,且AD3tanAOD

(1)求该反比例函数和一次函数的解析式;

(2)求△AOB的面积;

(3)Ex轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在RtABC中,ACB=90°,以AC为直径的OAB边交于点D,过点D的切线交BC于点E

(1)求证:EB=EC

(2)当ABC满足什么条件时,四边形ODEC是正方形?证明你的结论.

查看答案和解析>>

科目: 来源: 题型:

【题目】某初级中学正在展开文明城市创建人人参与,志愿服务我当先行创文活动为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.

1)请补全条形统计图;

2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,在矩形ABCD中,动点EA出发,沿A→B→C方向运动,当点E到达点C时停止运动,过点EEFAECD于点F,设点E运动路程为x,CF=y,如图2所表示的是yx的函数关系的大致图象,给出下列结论:①a=3;②当CF=时,点E的运动路程为,则下列判断正确的是(  )

A. ①②都对 B. ①②都错 C. ①对②错 D. ①错②对

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线yx2+bx+cx轴于A(﹣10),B30)两点,交y轴于点C

1)如图1,求抛物线的解析式;

2)如图2,点P是第一象限抛物线上的一个动点,连接CPx轴于点E,过点PPKx轴交抛物线于点K,交y轴于点N,连接ANENAC,设点P的横坐标为t,四边形ACEN的面积为S,求St之间的函数关系式(不要求写出自变量t的取值范围);

3)如图3,在(2)的条件下,点FPC中点,过点KPC的垂线与过点F平行于x轴的直线交于点HKHCP,点Q为第一象限内直线KP下方抛物线上一点,连接KQy轴于点G,点MKP上一点,连接MFKF,若∠MFK=∠PKQMPAE+GN,求点Q坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图(1),某数学活动小组经探究发现:在⊙O中,直径AB与弦CD相交于点P,此时PA· PB=PC·PD

1)如图(2),若ABCD相交于圆外一点P, 上面的结论是否成立?请说明理由.

2)如图(3,PD绕点P逆时针旋转至与⊙O相切于点C, 直接写出PAPBPC之间的数量关系.

3)如图(3),直接利用(2)的结论,求当 PC= ,PA=1,阴影部分的面积.

查看答案和解析>>

同步练习册答案