科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,A点的坐标为(a,6),AB⊥x轴于点B,=,反比例函数y=的图象的一支分别交AO、AB于点C、D.延长AO交反比例函数的图象的另一支于点E.已知点D的纵坐标为.
(1)求反比例函数的解析式及点E的坐标;
(2)连接BC,求S△CEB.
(3)若在x轴上的有两点M(m,0)N(-m,0).
①以E、M、C、N为顶点的四边形能否为矩形?如果能求出m的值,如果不能说明理由.
②若将直线OA绕O点旋转,仍与y=交于C、E,能否构成以E、M、C、N为顶点的四边形为菱形,如果能求出m的值,如果不能说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】综合与实践
在数学活动课上,老师给出如下问题,让同学们展开探究活动:
[问题情境]
如图①,在中,,点为上一点,将线段绕点逆时针旋转,得到的对应线段为,过点作,交于点,请你根据上述条件,提出恰当的数学问题并解答.
[解决问题]
下面是学习小组提出的三个问题,请你解答这些问题:
(1)“兴趣”组提出的问题是:求证:;
(2)“实践”小组提出的问题是:如图②,若将沿的垂直平分线对折,得到,连接,则线段与有怎样的数量关系?请说明理由;
(3)“奋进”小组在“实践”小组探究的基础上,提出了如下问题:延长与交于点,连接,求证:四边形是矩形.
查看答案和解析>>
科目: 来源: 题型:
【题目】关公,作为运城乃至山西的一张名片,吸引了来自世界各地的游客,在运城西南公里的常平村(关公故乡)南山上,有一尊巨型关公铜像,高米,象征关公享年岁,底座的高度也有一定寓意.有一位游客,对此产生了兴趣,想测量它的高度,由于游客无法直接到达铜像底部,因此该游客计划借助坡面高度来测量它的高度.如图,代表底座的高,坡顶与底座底部处在同一水平面上,该游客在斜坡底处测得该底座顶端的仰角为,然后他沿着坡度为的斜坡攀行了米,在坡顶处又测得该底座顶端的仰角为.求:
坡顶到地面的距离;
求底座的高度(结果精确到米).
(参考数据:,
查看答案和解析>>
科目: 来源: 题型:
【题目】在大家的期盼中,我区某农贸市场于2009年12月9日盛大开业,王阿姨以每斤元的价格购进山药若干斤,然后以每斤元的价格出售,每天可售出斤.通过调查发现,这种山药每斤的售价每降低元,每天可多售出斤.为了保证每天至少售出斤,王阿姨决定降价销售.
(1)若将这种山药每斤的售价降低元,则每天的销售量是______斤(用含的代数式表示);
(2)销售这种山药要想每天盈利元,王阿姨需将每斤的售价降低多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读材料:各类方程的解法
求解一元二次方程,把它转化为两个一元一次方程来解,求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验,各类方程的解法不尽相同,但是它们有一个共同的基本数学思想“转化”,把未知转化为已知.
用“转化”的数学思想,我们还可以解一些新的方程.
例如:解方程
解:移项,得
两边平方,得
即
两边再平方,得
即
解这个方程得:
检验:当时,原方程左边,右边
不是原方程的根;
当时,原方程左边,右边
原方程的根
原方程的根是.
(1)请仿照上述解法,求出方程的解;
(2)如图已知矩形草坪的长,宽,小华把一根长为的绳子的一端固定在点,从草坪边沿走到点处,把长绳段拉直并固定在点,然后沿草坪边沿走到点处,把长绳剩下的一段拉直,长绳的另一端恰好落在点,则 .
查看答案和解析>>
科目: 来源: 题型:
【题目】将一副三角尺(在中,,,在中,,)如图摆放,点为的中点,交于点,经过点,将绕点顺时针方向旋转(),交于点,交于点,则的值为( )
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是( )
A.(―1,2)
B.(―9,18)
C.(―9,18)或(9,―18)
D.(―1,2)或(1,―2)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与抛物线交于A、B两点,点A在x轴上,点B的横坐标为-8.
(1)求该抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.
①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;
②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com